ON FUNDAMENTAL FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS OF DEGREE 2

被引:7
|
作者
Jaasaari, Jesse [1 ]
Lester, Stephen [1 ,2 ]
Saha, Abhishek [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Kings Coll London, Dept Math, London W2CR 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Siegel modular form; Fourier coefficients; L-function; sign changes; PRIME NUMBER THEOREM; SQUARE L-FUNCTIONS; SIGN CHANGES; EISENSTEIN SERIES; MODULAR-FORMS; EXTERIOR SQUARE; L-VALUES; EIGENVALUES; MOMENTS; FUNCTORIALITY;
D O I
10.1017/S1474748021000542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Siegel cusp form of degree 2, even weight k >= 2, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients a(F, S) of F at fundamental matrices S (i.e., with -4det(S) equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with det(S) (sic) X, the sequence a(F, S) has at least X(1-)(epsilon )sign changes and takes at least X-1-(epsilon) 'large values'. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan-Gross-Prasad conjecture, we prove the bound vertical bar a(F,S)vertical bar <<(F,epsilon) det(S)(k/2-1/2)/(log vertical bar det(S)vertical bar)(1/8-epsilon) for fundamental matrices S.
引用
收藏
页码:1819 / 1869
页数:51
相关论文
共 50 条