ON FUNDAMENTAL FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS OF DEGREE 2

被引:7
|
作者
Jaasaari, Jesse [1 ]
Lester, Stephen [1 ,2 ]
Saha, Abhishek [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Kings Coll London, Dept Math, London W2CR 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Siegel modular form; Fourier coefficients; L-function; sign changes; PRIME NUMBER THEOREM; SQUARE L-FUNCTIONS; SIGN CHANGES; EISENSTEIN SERIES; MODULAR-FORMS; EXTERIOR SQUARE; L-VALUES; EIGENVALUES; MOMENTS; FUNCTORIALITY;
D O I
10.1017/S1474748021000542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Siegel cusp form of degree 2, even weight k >= 2, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients a(F, S) of F at fundamental matrices S (i.e., with -4det(S) equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with det(S) (sic) X, the sequence a(F, S) has at least X(1-)(epsilon )sign changes and takes at least X-1-(epsilon) 'large values'. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan-Gross-Prasad conjecture, we prove the bound vertical bar a(F,S)vertical bar <<(F,epsilon) det(S)(k/2-1/2)/(log vertical bar det(S)vertical bar)(1/8-epsilon) for fundamental matrices S.
引用
收藏
页码:1819 / 1869
页数:51
相关论文
共 50 条
  • [21] On sign changes of Fourier coefficients of Hermitian cusp forms of degree two
    Rimpa Nandi
    Sujeet Kumar Singh
    Prashant Tiwari
    The Ramanujan Journal, 2023, 61 : 1037 - 1062
  • [22] On Fourier coefficients of Siegel modular forms of degree two with respect to congruence subgroups
    Chida, Masataka
    Katsurada, Hidenori
    Matsumoto, Kohji
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2014, 84 (01): : 31 - 47
  • [23] On Fourier coefficients of Siegel modular forms of degree two with respect to congruence subgroups
    Masataka Chida
    Hidenori Katsurada
    Kohji Matsumoto
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2014, 84 : 31 - 47
  • [24] Estimates for Fourier coefficients of Hermitian cusp forms of degree two
    Kumar, Arvind
    Ramakrishnan, B.
    ACTA ARITHMETICA, 2018, 183 (03) : 257 - 275
  • [25] ON THE NATURAL DENSITIES OF EIGENVALUES OF A SIEGEL CUSP FORM OF DEGREE 2
    Das, Soumya
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (01) : 9 - 15
  • [26] Multiplicative relations for Fourier coefficients of degree 2 Siegel eigenforms
    McCarthy, Dermot
    JOURNAL OF NUMBER THEORY, 2017, 170 : 263 - 281
  • [27] Sign changes of Fourier coefficients of cusp forms supported on prime power indices
    Kohnen, Winfried
    Martin, Yves
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) : 1921 - 1927
  • [28] The dimensions of spaces of Siegel cusp forms of general degree
    Wakatsuki, Satoshi
    ADVANCES IN MATHEMATICS, 2018, 340 : 1012 - 1066
  • [29] On products of Fourier coefficients of cusp forms
    Hofmann, Eric
    Kohnen, Winfried
    FORUM MATHEMATICUM, 2017, 29 (01) : 245 - 250
  • [30] On the Signs of Fourier Coefficients of Cusp Forms
    Marvin Knopp
    Winfried Kohnen
    Wladimir Pribitkin
    The Ramanujan Journal, 2003, 7 : 269 - 277