ON FUNDAMENTAL FOURIER COEFFICIENTS OF SIEGEL CUSP FORMS OF DEGREE 2
被引:7
|
作者:
Jaasaari, Jesse
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Math Sci, London E1 4NS, EnglandQueen Mary Univ London, Sch Math Sci, London E1 4NS, England
Jaasaari, Jesse
[1
]
Lester, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
Kings Coll London, Dept Math, London W2CR 2LS, EnglandQueen Mary Univ London, Sch Math Sci, London E1 4NS, England
Lester, Stephen
[1
,2
]
Saha, Abhishek
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Math Sci, London E1 4NS, EnglandQueen Mary Univ London, Sch Math Sci, London E1 4NS, England
Saha, Abhishek
[1
]
机构:
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Kings Coll London, Dept Math, London W2CR 2LS, England
Let F be a Siegel cusp form of degree 2, even weight k >= 2, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients a(F, S) of F at fundamental matrices S (i.e., with -4det(S) equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with det(S) (sic) X, the sequence a(F, S) has at least X(1-)(epsilon )sign changes and takes at least X-1-(epsilon) 'large values'. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan-Gross-Prasad conjecture, we prove the bound vertical bar a(F,S)vertical bar <<(F,epsilon) det(S)(k/2-1/2)/(log vertical bar det(S)vertical bar)(1/8-epsilon) for fundamental matrices S.
机构:
Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1, England
Chennai Math Inst, H1, SIPCOT IT Pk, Siruseri, Kelambakkam 603103, Tamil Nadu, IndiaQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1, England
Paul, Biplab
Saha, Abhishek
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1, EnglandQueen Mary Univ London, Sch Math Sci, Mile End Rd, London E1, England