Convex generalized Nash equilibrium problems and polynomial optimization

被引:14
作者
Nie, Jiawang [1 ]
Tang, Xindong [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
关键词
Generalized Nash equilibrium problem; Convex polynomial; Polynomial optimization; Moment-SOS relaxation; Lagrange multiplier expression; HIERARCHY; GAMES;
D O I
10.1007/s10107-021-01739-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper studies convex generalized Nash equilibrium problems that are given by polynomials. We use rational and parametric expressions for Lagrange multipliers to formulate efficient polynomial optimization for computing generalized Nash equilibria (GNEs). The Moment-SOS hierarchy of semidefinite relaxations are used to solve the polynomial optimization. Under some general assumptions, we prove the method can find a GNE if there exists one, or detect nonexistence of GNEs. Numerical experiments are presented to show the efficiency of the method.
引用
收藏
页码:1485 / 1518
页数:34
相关论文
共 58 条
[1]   Semidefinite Programming and Nash Equilibria in Bimatrix Games [J].
Ahmadi, Amir Ali ;
Zhang, Jeffrey .
INFORMS JOURNAL ON COMPUTING, 2021, 33 (02) :607-628
[2]   Generalized Nash equilibria for SaaS/PaaS Clouds [J].
Anselmi, Jonatha ;
Ardagna, Danilo ;
Passacantando, Mauro .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 236 (01) :326-339
[3]   Generalized Nash Equilibria for the Service Provisioning Problem in Multi-Cloud Systems [J].
Ardagna, Danilo ;
Ciavotta, Michele ;
Passacantando, Mauro .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2017, 10 (03) :381-395
[4]   EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY [J].
Arrow, Kenneth J. ;
Debreu, Gerard .
ECONOMETRICA, 1954, 22 (03) :265-290
[5]   Exact Penalization of Generalized Nash Equilibrium Problems [J].
Ba, Qin ;
Pang, Jong-Shi .
OPERATIONS RESEARCH, 2020,
[6]   A Frank-Wolfe type theorem for convex polynomial programs [J].
Belousov, EG ;
Klatte, D .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (01) :37-48
[7]  
Bertsekas DP., 1997, J OPER RES SOC, V48, P334, DOI [DOI 10.1057/PALGRAVE.JORS.2600425, 10.1057/palgrave.jors.2600425]
[8]   A game-theoretic formulation of joint implementation of environmental projects [J].
Breton, M ;
Zaccour, G ;
Zahaf, M .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 168 (01) :221-239
[9]   ON THE LASSERRE HIERARCHY OF SEMIDEFINITE PROGRAMMING RELAXATIONS OF CONVEX POLYNOMIAL OPTIMIZATION PROBLEMS [J].
De Klerk, Etienne ;
Laurent, Monique .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) :824-832