A parallel viscosity extragradient method for solving a system of pseudomonotone equilibrium problems and fixed point problems in Hadamard spaces

被引:1
作者
Aremu, Kazeem Olalekan [1 ,2 ]
Jolaoso, Lateef Olakunle [2 ]
Aphane, Maggie [2 ]
Oyewole, Olawale Kazeem [3 ,4 ]
机构
[1] Usmanu Danfodiyo Univ Sokoto, Dept Math, PMB 2346, Sokoto, Sokoto State, Nigeria
[2] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Medunsa, Ga Rankuwa, South Africa
[3] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[4] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Extragradient method; Equilibrium problems; Common fixed point; Pseudomontone; Hadamard spaces; VARIATIONAL-INEQUALITIES; DELTA-CONVERGENCE; ALGORITHMS; MAPPINGS; PROJECTION; FAMILY; SET;
D O I
10.1007/s11587-021-00640-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study a parallel viscosity extragradient method for approximating a common solution of a finite system of pseudomonotone equilibrium problems and common fixed point problem for nonexpansive mappings in Hadamard spaces. We propose an iterative method and prove its strong convergence to an element in the intersection of the solution set of finite system of equilibrium problems and the fixed points set of nonexpansive mappings. Furthermore, we give an example in a Hadamard space which is not an Hilbert space to support the convergence theorem in the paper. This result generalizes and extends recent results in the literature.
引用
收藏
页码:819 / 840
页数:22
相关论文
共 52 条
[1]  
Aibinu Mathew O., 2020, Nonlinear Functional Analysis and Applications, V25, P135, DOI 10.22771/nfaa.2020.25.01.10
[2]  
Ansari Q., 2014, it Nonlinear Analysis: Approximation Theory, P281, DOI [10.1007/978-81-322-1883-8, DOI 10.1007/978-81-322-1883-8_9]
[3]   A viscosity-type proximal point algorithm for monotone equilibrium problem and fixed point problem in an Hadamard space [J].
Aremu, K. O. ;
Izuchukwu, C. ;
Mebawondu, A. A. ;
Mewomo, O. T. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
[4]   Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) spaces [J].
Aremu, K. O. ;
Jolaoso, L. O. ;
Izuchukwu, C. ;
Mewomo, O. T. .
RICERCHE DI MATEMATICA, 2020, 69 (01) :13-34
[5]   Quasilinearization and curvature of Aleksandrov spaces [J].
Berg, I. D. ;
Nikolaev, I. G. .
GEOMETRIAE DEDICATA, 2008, 133 (01) :195-218
[6]  
Blum E., 1994, MATH STUDENT, V63, P123
[7]   A Parallel Hybrid Bregman Subgradient Extragradient Method for a System of Pseudomonotone Equilibrium and Fixed Point Problems [J].
Bokodisa, Annel Thembinkosi ;
Jolaoso, Lateef Olakunle ;
Aphane, Maggie .
SYMMETRY-BASEL, 2021, 13 (02) :1-24
[8]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[9]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[10]  
Censor Y., 1994, Numer Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]