Machine learning assisted prediction in the discharge capacities of novel MXene cathodes for aluminum ion batteries

被引:7
作者
Li, Jiahui [1 ,2 ]
Xi, Shengkun [1 ,2 ]
Lei, Tongxing [1 ,2 ]
Yao, Ruijun [1 ,2 ]
Zeng, Fanshuai [6 ]
Wu, Junwei [1 ,2 ]
Tu, Shaobo [6 ]
Liu, Xingjun [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Inst Mat Genome & Big Data, Shenzhen 518055, Peoples R China
[3] Xiamen Univ, Coll Mat, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Mat Genome, Xiamen 361005, Peoples R China
[5] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Shenzhen 518055, Peoples R China
[6] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Jiangxi, Peoples R China
关键词
Machine learning; Aluminum ion batteries; MXene cathodes; Auxiliary means; CARBIDE MXENE;
D O I
10.1016/j.est.2023.110196
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Conventional experimental methods are widely utilized to discover novel cathode materials for aluminum ion batteries (AIB), but their high price and low-efficiency present extra challenges when dealing with the vast family of MXene materials. In order to vigorously promote the application and development of MXene cathodes in aluminum ion batteries, a new accelerable method to predict the discharge capacities based on machine learning is proposed. Firstly, we establish and train the machine learning models which extract from experimental results of several MXene cathodes (Nb2C, Ti3C2, and V2C) to predict the battery status and initial discharge capacity of mentioned cathodes. Secondly, we refine the models using few Ti2C experimental results to successfully predict the battery status and initial discharge capacity for new Ti2C cathode, which exhibit higher capacity and longer cycle life than Nb2C, Ti3C2 and V2C cathodes. This work provides a new method for predicting electrochemical properties of advanced energy materials beyond MXene materials for aluminum-ion batteries, including but not limited to carbon materials or transition metal oxides.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal-air batteries [J].
Anand, Rohit ;
Ram, Babu ;
Umer, Muhammad ;
Zafari, Mohammad ;
Umer, Sohaib ;
Lee, Geunsik ;
Kim, Kwang S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (42) :22500-22511
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[4]   Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries [J].
Bashir, Tariq ;
Zhou, Shaowen ;
Yang, Shiqi ;
Ismail, Sara Adeeba ;
Ali, Tariq ;
Wang, Hao ;
Zhao, Jianqing ;
Gao, Lijun .
ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]   Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries [J].
Byeon, Ayeong ;
Zhao, Meng-Qiang ;
Ren, Chang E. ;
Halim, Joseph ;
Kota, Sankalp ;
Urbankowski, Patrick ;
Anasori, Babak ;
Barsoum, Michel W. ;
Gogotsi, Yury .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) :4296-4300
[7]   Sodium-Ion Battery Materials and Electrochemical Properties Reviewed [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[8]   The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries [J].
Gao, Yaning ;
Yang, Haoyi ;
Wang, Xinran ;
Bai, Ying ;
Zhu, Na ;
Guo, Shuainan ;
Suo, Liumin ;
Li, Hong ;
Xu, Huajie ;
Wu, Chuan .
CHEMSUSCHEM, 2020, 13 (04) :732-740
[9]   Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions [J].
Han, Meikang ;
Maleski, Kathleen ;
Shuck, Christopher Eugene ;
Yang, Yizhou ;
Glazar, James T. ;
Foucher, Alexandre C. ;
Hantanasirisakul, Kanit ;
Sarycheva, Asia ;
Frey, Nathan C. ;
May, Steven J. ;
Shenoy, Vivek B. ;
Stach, Eric A. ;
Gogotsi, Yury .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (45) :19110-19118
[10]   Machine learning and symbolic regression investigation on stability of MXene materials [J].
He, Mu ;
Zhang, Lei .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 196