Effect of Partial Cation Replacement on Anode Performance of Sodium-Ion Batteries

被引:0
|
作者
He, Shijiang [1 ]
Wang, Zidong [2 ]
Qiu, Wenbo [1 ]
Zhao, Huaping [2 ]
Lei, Yong [2 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Tech Univ Ilmenau, Inst Phys & IMN MacroNano, Fachgebiet Angew Nanophys, D-98693 Ilmenau, Germany
来源
BATTERIES-BASEL | 2024年 / 10卷 / 02期
关键词
sodium-ion batteries; anode; multi-metal sulfides; partial cation replacement; CAPACITY; METAL; COS2; XPS;
D O I
10.3390/batteries10020044
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to their high specific capacity and long cycle life, bimetallic sulfides are the preferred choice of researchers as anodes in sodium-ion batteries (SIBs). However, studies indicate that this class of materials often requires expensive elements such as Co, Sb, Sn, etc., and their performance is insufficient with the use of inexpensive Fe, V alone. Therefore, there is a need to explore the relationship between metal cations and anode performance so that the requirements of cost reduction and performance enhancement can be met simultaneously. In this work, a series of partially replaced sulfides with different cation ratios have been prepared by a hydrothermal method followed by heat treatment. By partially replacing Co in NiCo sulfides, all samples show improved capacity and stability over the original NiCo sulfides. As a result, the metal elements have different oxidation states, which leads to a higher capacity through their synergistic effects on each other. Mn-NiCoS with 10% replacement showed satisfactory capacity (721.09 mAh g-1 at 300 mA g-1, 662.58 mAh g-1 after 20 cycles) and excellent cycle life (85.41% capacity retention after 1000 cycles at 2000 mA g-1).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries
    Mudgal, Priya
    Arora, Himani
    Pati, Jayashree
    Singh, Manish K.
    Khetri, Mahantesh
    Dhaka, Rajendra S.
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2022, 88 (03): : 430 - 438
  • [22] Structural design of anode materials for sodium-ion batteries
    Wang, Wanlin
    Li, Weijie
    Wang, Shun
    Miao, Zongcheng
    Liu, Hua Kun
    Chou, Shulei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) : 6183 - 6205
  • [23] Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
    Wang, Qidi
    Zhao, Chenglong
    Lu, Yaxiang
    Li, Yunming
    Zheng, Yuheng
    Qi, Yuruo
    Rong, Xiaohui
    Jiang, Liwei
    Qi, Xinguo
    Shao, Yuanjun
    Pan, Du
    Li, Baohua
    Hu, Yong-Sheng
    Chen, Liquan
    SMALL, 2017, 13 (42)
  • [24] Carbon nanoflakes as a promising anode for sodium-ion batteries
    Zhu, Xiaocui
    Savilov, S., V
    Ni, Jiangfeng
    Li, Liang
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [25] Recent Advances in Anode Materials for Sodium-Ion Batteries
    Bai, Xue
    Wu, Nannan
    Yu, Gengchen
    Li, Tao
    INORGANICS, 2023, 11 (07)
  • [26] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [27] A review on anode materials for lithium/sodium-ion batteries
    Abhimanyu Kumar Prajapati
    Ashish Bhatnagar
    Journal of Energy Chemistry, 2023, 83 (08) : 509 - 540
  • [28] Computational Screening of Anode Materials for Sodium-Ion Batteries
    Yu, Seungho
    Kim, Sang-Ok
    Kim, Hyung-Seok
    Choi, Wonchang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1915 - A1919
  • [29] Expanded graphite as superior anode for sodium-ion batteries
    Yang Wen
    Kai He
    Yujie Zhu
    Fudong Han
    Yunhua Xu
    Isamu Matsuda
    Yoshitaka Ishii
    John Cumings
    Chunsheng Wang
    Nature Communications, 5
  • [30] Anode materials for fast charging sodium-ion batteries
    He, Zidong
    Huang, Yujie
    Liu, Huaxin
    Geng, Zhenglei
    Li, Yujin
    Li, Simin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2024, 129