Change point detection via feedforward neural networks with theoretical guarantees

被引:0
|
作者
Zhou, Houlin [1 ]
Zhu, Hanbing [1 ]
Wang, Xuejun [1 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Change point detection; Complete f-moment consistency; Cumulative sum; Feedforward neural networks; CONVERGENCE; MODEL;
D O I
10.1016/j.csda.2023.107913
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article mainly studies change point detection for mean shift change point model. An estimation method is proposed to estimate the change point via feedforward neural networks. The complete f -moment consistency of the proposed estimator is obtained. Numerical simulation results show that the performance of the proposed estimator is better than that of cumulative sum type estimator which is widely used in the change point detection, especially when the mean shift signal size is small. Finally, we demonstrate the proposed method by empirically analyzing a stock data set.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Design of Artificial Neural Networks for Change-Point Detection
    Neuner, H.
    1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 139 - 144
  • [2] Convergence analyses on sparse feedforward neural networks via group lasso regularization
    Wang, Jian
    Cai, Qingling
    Chang, Qingquan
    Zurada, Jacek M.
    INFORMATION SCIENCES, 2017, 381 : 250 - 269
  • [3] Change Point Detection in Correlation Networks
    Barnett, Ian
    Onnela, Jukka-Pekka
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Optimization of feedforward neural networks
    Han, J
    Moraga, C
    Sinne, S
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1996, 9 (02) : 109 - 119
  • [5] Change-point detection with recurrence networks
    Iwayama, Koji
    Hirata, Yoshito
    Suzuki, Hideyuki
    Aihara, Kazuyuki
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2013, 4 (02): : 160 - 171
  • [6] Change Point Detection via Synthetic Signals
    Huang, Ting-Ji
    Zhou, Qi-Le
    Ye, Han-Jia
    Zhan, De-Chuan
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2023, 2023, 14343 : 25 - 35
  • [7] Feedforward neural networks without orthonormalization
    Chen, Lei
    Pung, Hung Keng
    Long, Fei
    ICEIS 2007: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2007, : 420 - 423
  • [8] Topology of Learning in Feedforward Neural Networks
    Gabella, Maxime
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3588 - 3592
  • [9] A New Formulation for Feedforward Neural Networks
    Razavi, Saman
    Tolson, Bryan A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (10): : 1588 - 1598
  • [10] A Modified Algorithm for Feedforward Neural Networks
    夏战国
    管红杰
    李政伟
    孟斌
    Journal of China University of Mining & Technology, 2002, (01) : 104 - 108