Remaining useful life prediction of bearings using a trend memory attention-based GRU network

被引:3
|
作者
Li, Jingwei [1 ]
Li, Sai [1 ,2 ]
Fan, Yajun [3 ]
Ding, Zhixia [1 ]
Yang, Le [1 ]
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Minist Educ, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Huazhong, Peoples R China
基金
中国国家自然科学基金;
关键词
remaining useful life prediction; gated recurrent unit; trend memory; degradation stage division; PROGNOSTICS; UNIT; LSTM;
D O I
10.1088/1361-6501/ad22cc
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction of bearings holds significant importance in enhancing the reliability and durability of rotating machinery. Bearings undergo a gradual degradation process that unfolds over multiple stages. In this paper, a novel framework for forecasting the RUL of bearings is put forward, which includes the construction of a health indicator with a stage division algorithm (SDA) and the estimation of the health indicator using a new trend memory attention-based gated recurrent unit (TMAGRU). The SDA, based on the K-Means++ algorithm and angle recognition algorithm, is introduced to distinguish the degradation stage based on the health indicator. Inspired by the double exponential smoothing technique and attention mechanism, the proposed TMAGRU network effectively incorporates both the historical health information in the slow degradation stage and its trend. Experimental results conducted on IEEE PHM Challenge 2012 dataset and XJTU-SY dataset demonstrate the superior predictive performance of the proposed approach compared to several state-of-the-art predictive networks.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings
    Wu, Jinxin
    He, Deqiang
    Li, Jiayi
    Miao, Jian
    Li, Xianwang
    Li, Hongwei
    Shan, Sheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 247
  • [32] A recurrent neural network based health indicator for remaining useful life prediction of bearings
    Guo, Liang
    Li, Naipeng
    Jia, Feng
    Lei, Yaguo
    Lin, Jing
    NEUROCOMPUTING, 2017, 240 : 98 - 109
  • [33] Spatial correlation and temporal attention-based LSTM for remaining useful life prediction of turbofan engine
    Tian, Huixin
    Yang, Linzheng
    Ju, Bingtian
    MEASUREMENT, 2023, 214
  • [34] Attention-based LSTM for Remaining Useful Life Estimation of Aircraft Engines
    Boujamza, Abdeltif
    Elhaq, Saad Lissane
    IFAC PAPERSONLINE, 2022, 55 (12): : 450 - 455
  • [35] Remaining useful life prediction for bearing based on automatic feature combination extraction and residual multi-Head attention GRU network
    He, Jiawen
    Zhang, Xu
    Zhang, Xuechang
    Shen, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [36] Dual-Attention-Based Multiscale Convolutional Neural Network With Stage Division for Remaining Useful Life Prediction of Rolling Bearings
    Jiang, Fei
    Ding, Kang
    He, Guolin
    Lin, Huibin
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] Remaining Useful Life of the Rolling Bearings Prediction Method Based on Transfer Learning Integrated with CNN-GRU-MHA
    Yu, Jianghong
    Shao, Jingwei
    Peng, Xionglu
    Liu, Tao
    Yao, Qishui
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [38] Remaining Useful Life Prediction Via Interactive Attention-Based Deep Spatio-Temporal Network Fusing Multisource Information
    Lu, Shixiang
    Gao, Zhiwei
    Xu, Qifa
    Jiang, Cuixia
    Xie, Tianming
    Zhang, Aihua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (07) : 8007 - 8016
  • [39] Remaining Useful Life Prediction for Equipment Using Residual Network and Convolutional Attention Mechanism
    Mo R.
    Li T.
    Si X.
    Zhu X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (04): : 194 - 202
  • [40] Multi-graph attention fusion graph neural network for remaining useful life prediction of rolling bearings
    Xiao, Yongchang
    Cui, Lingli
    Liu, Dongdong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)