Nonparametric estimation for random effects models driven by fractional Brownian motion using Hermite polynomials

被引:1
作者
El Maroufy, Hamid [1 ]
Ichi, Souad [1 ]
El Omari, Mohamed [2 ]
Slaoui, Yousri [3 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Technol, Math Dept, Mghila 23000, Beni Mellal, Morocco
[2] Chouaib Doukkali Univ, Polydisciplinary Fac Sidi Bennour, ESIM, El Jadida 24000, Morocco
[3] Univ Poitiers, Lab Math & Appl, Futuroscope Chasseneuil, Poitiers, France
关键词
Random effect model; Fractional Brownian motion; Nonparametric estimation; Hermite polynomials;
D O I
10.1007/s11203-023-09302-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a nonparametric estimation of random effects from the following fractional diffusions dX(j)(t)=psi X-j(j)(t)dt+X-j(t)dW(H.j)(t), X-j(0)=x(0)(j), t >= 0, j=1,& mldr;,n, where psi(j )are random variables and W-j,W-H are fractional Brownian motions with a common known Hurst index H is an element of (0,1). We are concerned with the study of Hermite projection and kernel density estimators for the Psi(j)'s common density, when the horizon time of observation is fixed or sufficiently large. We corroborate these theoretical results through simulations. An empirical application is made to the real Asian financial data.
引用
收藏
页码:305 / 333
页数:29
相关论文
共 32 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F, V55
[2]   Comparison of nonparametric methods in nonlinear mixed effects models [J].
Antic, J. ;
Laffont, C. M. ;
Chafai, D. ;
Concordet, D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) :642-656
[3]  
Askey R., 1965, AM J MATH, V87, P695
[4]  
Belomestny D, 2019, ANN I STAT MATH, V71, P29, DOI 10.1007/s10463-017-0624-y
[5]   Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0,1/2) [J].
Cheridito, P ;
Nualart, D .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06) :1049-1081
[6]   UPRIGHT, CORRELATED RANDOM-WALKS - A STATISTICAL-BIOMECHANICS APPROACH TO THE HUMAN POSTURAL CONTROL-SYSTEM [J].
COLLINS, JJ ;
DE LUCA, CJ .
CHAOS, 1995, 5 (01) :57-63
[7]  
Comte F, 2020, MATH METHODS STAT, V29, P1, DOI 10.3103/S1066530720010020
[8]   Nonparametric estimation of random-effects densities in linear mixed-effects model [J].
Comte, Fabienne ;
Samson, Adeline .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) :951-975
[9]   Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects [J].
Delattre, Maud ;
Genon-Catalot, Valentine ;
Samson, Adeline .
SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) :322-343
[10]   Nonparametric estimation in a mixed-effect Ornstein-Uhlenbeck model [J].
Dion, Charlotte .
METRIKA, 2016, 79 (08) :919-951