PlantCHRs: A comprehensive database of plant chromatin remodeling factors

被引:0
作者
Yan, Hengyu [1 ]
Liu, Fangyuan [1 ]
Zhang, Guowei [1 ]
Liu, Shuai [1 ]
Ma, Weiwei [1 ]
Yang, Ting [1 ]
Li, Yubin [1 ]
Yang, Jiaotong [2 ]
Cui, Hailong [3 ]
机构
[1] Qingdao Agr Univ, Coll Agron, Qingdao, Peoples R China
[2] Guizhou Univ Tradit Chinese Med, Resource Inst Chinese & Ethn Mat Med, Guiyang, Peoples R China
[3] Qingdao Agr Univ, Coll Econ & Management, Cooperat Coll, Qingdao, Peoples R China
关键词
Snf2; Chromatin remodeling factors; Database; Plant; Evolution; ARABIDOPSIS-THALIANA; PROTEINS; IDENTIFICATION; ACTIVATION; EXPRESSION; REPRESSION; RESPONSES; ATPASES; GENES;
D O I
10.1016/j.csbj.2023.10.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Snf2 protein family is a group of ATP-dependent chromatin remodeling factors (CHRs) that play an essential role in gene expression regulation. In plants, Snf2 is involved in growth, development, as well as stress resistance. However, only a very limited number of experimentally validated Snf2 have been identified and reported, while the majority remaining undiscovered in most species . In this study, we predicted 3135 Snf2 proteins and 8398 chromatin remodeling complex (CRC) subunits in diverse plant species, and constructed the Plant Chromatin Remodeling Factors Database (PlantCHRs, http://www.functionalgenomics.cn/PlantCHRs/), which provide a comprehensive resource for researchers to access information about plant CHRs. We also developed an online tool capable of predicting CHRs and CRC subunits. Moreover, we investigated the distribution of Snf2 proteins in different species and observed a significant increase in the number of Snf2 proteins and the diversity of the Snf2 subfamily during the evolution, highlighting their evolutionary importance. By analyzing the expression patterns of the Snf2 genes in different tissues of maize and Arabidopsis, we found that the Snf2 proteins may show some conservation across different species in regulating plant growth and development. Over the all, we established a comprehensive database for plant CHRs, which will facilitate the researches on plant chromatin remodeling.
引用
收藏
页码:4974 / 4987
页数:14
相关论文
共 48 条
  • [31] EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes
    Marakulina, Daria
    Vorontsov, Ilya E.
    Kulakovskiy, Ivan, V
    Lennartsson, Andreas
    Drablos, Finn
    Medvedeva, Yulia A.
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D564 - D570
  • [32] Chromatin Remodeling Protein ZmCHB101 Regulates Nitrate-Responsive Gene Expression in Maize
    Meng, Xinchao
    Yu, Xiaoming
    Wu, Yifan
    Kim, Dae Heon
    Nan, Nan
    Cong, Weixuan
    Wang, Shucai
    Liu, Bao
    Xu, Zheng-Yi
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [33] The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress
    Mlynarova, Ludmila
    Nap, Jan-Peter
    Bisseling, Ton
    [J]. PLANT JOURNAL, 2007, 51 (05) : 874 - 885
  • [34] The BioGRID interaction database: 2019 update
    Oughtred, Rose
    Stark, Chris
    Breitkreutz, Bobby-Joe
    Rust, Jennifer
    Boucher, Lorrie
    Chang, Christie
    Kolas, Nadine
    O'Donnell, Lara
    Leung, Genie
    McAdam, Rochelle
    Zhang, Frederick
    Dolma, Sonam
    Willems, Andrew
    Coulombe-Huntington, Jasmin
    Chatr-aryamontri, Andrew
    Dolinski, Kara
    Tyers, Mike
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D529 - D541
  • [35] Expression Atlas update: from tissues to single cells
    Papatheodorou, Irene
    Moreno, Pablo
    Manning, Jonathan
    Fuentes, Alfonso Munoz-Pomer
    George, Nancy
    Fexova, Silvie
    Fonseca, Nuno A.
    Fullgrabe, Anja
    Green, Matthew
    Huang, Ni
    Huerta, Laura
    Lqbal, Haider
    Jianu, Monica
    Mohammed, Suhaib
    Zhao, Lingyun
    Jarnuczak, Andrew F.
    Jupp, Simon
    Marioni, John
    Meyer, Kerstin
    Petryszak, Robert
    Medina, Cesar Augusto Prada
    Talavera-Lopez, Carlos
    Teichmann, Sarah
    Vizcaino, Juan Antonio
    Brazma, Alvis
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D77 - D83
  • [36] Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis
    Pardal, Alonso J.
    Piquerez, Sophie J. M.
    Dominguez-Ferreras, Ana
    Frungillo, Lucas
    Mastorakis, Emmanouil
    Reilly, Emma
    Latrasse, David
    Concia, Lorenzo
    Gimenez-Ibanez, Selena
    Spoel, Steven H.
    Benhamed, Moussa
    Ntoukakis, Vardis
    [J]. PLOS PATHOGENS, 2021, 17 (05)
  • [37] InParanoid-DIAMOND: faster orthology analysis with the InParanoid algorithm
    Persson, Emma
    Sonnhammer, Erik L. L.
    [J]. BIOINFORMATICS, 2022, 38 (10) : 2918 - 2919
  • [38] HMMER web server: 2018 update
    Potter, Simon C.
    Luciani, Aurelien
    Eddy, Sean R.
    Park, Youngmi
    Lopez, Rodrigo
    Finn, Robert D.
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) : W200 - W204
  • [39] Retief J D, 2000, Methods Mol Biol, V132, P243
  • [40] Snf2-family proteins: chromatin remodellers for any occasion
    Ryan, Daniel P.
    Owen-Hughes, Tom
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (05) : 649 - 656