Research on Learning Resource Recommendation Based on Knowledge Graph and Collaborative Filtering

被引:4
|
作者
Niu, Yanmin [1 ]
Lin, Ran [1 ]
Xue, Han [1 ]
机构
[1] Chongqing Normal Univ, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 19期
关键词
recommendation system; knowledge map; collaborative filtering; implicit data; SYSTEM;
D O I
10.3390/app131910933
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aims to solve the problem of limited learning efficiency caused by information overload and resource diversity in online course learning. We adopt a recommendation algorithm that combines knowledge graph and collaborative filtering, aiming to provide an application that can meet users' personalized learning needs and consider the semantic information of learning resources. In addition, this article collects and models implicit data in online courses and compares the impact of video and text learning resources on user learning needs under different weights in order to deeply understand the different contributions of video and text learning resources to meeting learning needs. The experimental results show that the video high-weight experimental group performs better than the text high-weight experimental group; students tend to prefer video resources. This experiment can help students cope with the challenges brought by numerous types of learning resources and provide personalized and high-quality learning experiences for learners. At the same time, adjusting and innovating teaching models for teachers has great reference value.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Research on Collaborative Filtering Recommendation of Learning Resource Based on Knowledge Association
    Li, Hao
    Du, Fanfan
    Zhang, Mingyan
    Wang, Libin
    Yu, Xue
    INNOVATIVE TECHNOLOGIES AND LEARNING, ICITL 2018, 2018, 11003 : 561 - 567
  • [2] Learning Resource Recommendation Model Based on Collaborative Knowledge Graph Attention Networks
    Wang, Chong
    Yue, Peipei
    IEEE ACCESS, 2024, 12 : 153232 - 153242
  • [3] WeMap Recommendation by Fusion of Knowledge Graph and Collaborative Filtering
    Niu X.
    Yang J.
    Yan H.
    Journal of Geo-Information Science, 2024, 26 (04) : 967 - 977
  • [4] A Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering
    Jiang, Bo
    Yang, Junchen
    Qin, Yanbin
    Wang, Tian
    Wang, Muchou
    Pan, Weifeng
    IEEE ACCESS, 2021, 9 (09): : 50880 - 50892
  • [5] KGCFRec: Improving Collaborative Filtering Recommendation with Knowledge Graph
    Peng, Jiquan
    Gong, Jibing
    Zhou, Chao
    Zang, Qian
    Fang, Xiaohan
    Yang, Kailun
    Yu, Jing
    ELECTRONICS, 2024, 13 (10)
  • [6] Simulation Resource Recommendation System Based on Collaborative Filtering
    Cheng Qiao
    Huang Jian
    Gong Jian-xing
    Hao Jian-guo
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 448 - 452
  • [7] Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding
    Shokrzadeh, Zeinab
    Feizi-Derakhshi, Mohammad-Reza
    Balafar, Mohammad -Ali
    Mohasefi, Jamshid Bagherzadeh
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [8] Research on Recommendation Algorithm Based on Collaborative Filtering
    Zhang Shichang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [9] Personalized Learning Resource Recommendation Method Based on Dynamic Collaborative Filtering
    Wang, Honggang
    Fu, Weina
    Mobile Networks and Applications, 2021, 26 (01) : 473 - 487
  • [10] Research on Collaborative Filtering Personalized Recommendation Algorithm Based on Deep Learning Optimization
    Guo Wei-wei
    Liu Feng
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 90 - 93