Dynamic control of hybrid grafted perfect vector vortex beams

被引:56
作者
Ahmed, Hammad [1 ]
Ansari, Muhammad Afnan [1 ]
Li, Yan [1 ,2 ]
Zentgraf, Thomas [3 ]
Mehmood, Muhammad Qasim [4 ]
Chen, Xianzhong [1 ]
机构
[1] Heriot Watt Univ, Inst Photon & Quantum Sci, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Scotland
[2] Zhengzhou Univ Aeronaut, Sch Mat, Zhengzhou 450015, Peoples R China
[3] Paderborn Univ, Dept Phys, Warburger Str 100, D-33098 Paderborn, Germany
[4] Informat Technol Univ ITU Punjab, Elect Engn Dept, MicroNano Lab, Ferozepur Rd, Lahore 54600, Pakistan
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
OPTICAL VORTEX; GENERATION;
D O I
10.1038/s41467-023-39599-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A metasurface is used to generate a hybrid grafted perfect vector vortex beam, which can be dynamically controlled with a half waveplate. The beam has spatially variant rates of polarization change due to the involvement of more topological charges. Perfect vector vortex beams (PVVBs) have attracted considerable interest due to their peculiar optical features. PVVBs are typically generated through the superposition of perfect vortex beams, which suffer from the limited number of topological charges (TCs). Furthermore, dynamic control of PVVBs is desirable and has not been reported. We propose and experimentally demonstrate hybrid grafted perfect vector vortex beams (GPVVBs) and their dynamic control. Hybrid GPVVBs are generated through the superposition of grafted perfect vortex beams with a multifunctional metasurface. The generated hybrid GPVVBs possess spatially variant rates of polarization change due to the involvement of more TCs. Each hybrid GPVVB includes different GPVVBs in the same beam, adding more design flexibility. Moreover, these beams are dynamically controlled with a rotating half waveplate. The generated dynamic GPVVBs may find applications in the fields where dynamic control is in high demand, including optical encryption, dense data communication, and multiple particle manipulation.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Multichannel Superposition of Grafted Perfect Vortex Beams [J].
Ahmed, Hammad ;
Intaravanne, Yuttana ;
Ming, Yang ;
Ansari, Muhammad Afnan ;
Buller, Gerald S. ;
Zentgraf, Thomas ;
Chen, Xianzhong .
ADVANCED MATERIALS, 2022, 34 (30)
[2]   A Minimalist Single-Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams [J].
Bao, Yanjun ;
Ni, Jincheng ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2020, 32 (06)
[3]   Twisted Rainbow Light and Nature-Inspired Generation of Vector Vortex Beams [J].
Bouchal, Petr ;
Bouchal, Zdenek .
LASER & PHOTONICS REVIEWS, 2022, 16 (07)
[4]   Dynamics of microparticles trapped in a perfect vortex beam [J].
Chen, Mingzhou ;
Mazilu, Michael ;
Arita, Yoshihiko ;
Wright, Ewan M. ;
Dholakia, Kishan .
OPTICS LETTERS, 2013, 38 (22) :4919-4922
[5]   Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control [J].
Chen, Shuqing ;
Xie, Zhiqiang ;
Ye, Huapeng ;
Wang, Xinrou ;
Guo, Zhenghao ;
He, Yanliang ;
Li, Ying ;
Yuan, Xiaocong ;
Fan, Dianyuan .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[6]   Nonlinear Beam Shaping with Binary Phase Modulation on Patterned WS2 Monolayer [J].
Dasgupta, Arindam ;
Yang, Xiaodong ;
Gao, Jie .
ACS PHOTONICS, 2020, 7 (09) :2506-2514
[7]   Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics [J].
Dorrah, Ahmed H. ;
Rubin, Noah A. ;
Tamagnone, Michele ;
Zaidi, Aun ;
Capasso, Federico .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Orbital angular momentum holography for high-security encryption [J].
Fang, Xinyuan ;
Ren, Haoran ;
Gu, Min .
NATURE PHOTONICS, 2020, 14 (02) :102-+
[9]   Simple technique for generating the perfect optical vortex [J].
Garcia-Garcia, Joaquin ;
Rickenstorff-Parrao, Carolina ;
Ramos-Garcia, Ruben ;
Arrizon, Victor ;
Ostrovsky, Andrey S. .
OPTICS LETTERS, 2014, 39 (18) :5305-5308
[10]   Machine Learning-Based Classification of Vector Vortex Beams [J].
Giordani, Taira ;
Suprano, Alessia ;
Polino, Emanuele ;
Acanfora, Francesca ;
Innocenti, Luca ;
Ferraro, Alessandro ;
Paternostro, Mauro ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
PHYSICAL REVIEW LETTERS, 2020, 124 (16)