Granular ball-based label enhancement for dimensionality reduction in multi-label data

被引:5
|
作者
Qian, Wenbin [1 ]
Ruan, Wenyong [1 ]
Li, Yihui [1 ]
Huang, Jintao [2 ]
机构
[1] Jiangxi Agr Univ, Sch Comp & Informat Engn, Nanchang 330045, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; Granular computing; Label enhancement; Multi-label data; Linear discriminant analysis; CLASSIFICATION;
D O I
10.1007/s10489-023-04771-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an important preprocessing procedure, dimensionality reduction for multi-label learning is an effective way to solve the challenge caused by high-dimensionality data. Most existing dimensionality reduction methods are mainly used to deal with single-label and multi-label data, which assumes each related label to the instance with the same important degree. However, there are different relatively important degrees for the related labels of each instance in many real applications. In this paper, a granular ball-based label enhancement algorithm is proposed to convert the logical label into label distribution for obtaining more supervision information. The granular ball can be regarded as local coarse grain to explore sample similarity based on neighborhood viewpoints. Then, the between-granular ball scatter and within-granular ball scatter measures are presented, which are utilized to construct a label distribution feature extraction algorithm. In addition, a two-stage mutual iterative learning framework is developed, label enhancement and dimensionality reduction are mutual interactive. Finally, Experiments are conducted with the six state-of-the-art methods on eleven multi-label data in terms of multiple representative evaluation measures. Experimental results show that the proposed method significantly outperforms other comparison methods by an average of 36.8% over six widely-used evaluation metrics.
引用
收藏
页码:24008 / 24033
页数:26
相关论文
共 50 条
  • [41] Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms
    Bromuri, Stefano
    Zufferey, Damien
    Hennebert, Jean
    Schumacher, Michael
    JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 51 : 165 - 175
  • [42] On the Stratification of Multi-label Data
    Sechidis, Konstantinos
    Tsoumakas, Grigorios
    Vlahavas, Ioannis
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 145 - 158
  • [43] Selective label enhancement for multi-label classification based on three-way decisions
    Zhao, Tianna
    Zhang, Yuanjian
    Miao, Duoqian
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 150 : 172 - 187
  • [44] Multi-label learning with label-specific feature reduction
    Xu, Suping
    Yang, Xibei
    Yu, Hualong
    Yu, Dong-Jun
    Yang, Jingyu
    Tsang, Eric C. C.
    KNOWLEDGE-BASED SYSTEMS, 2016, 104 : 52 - 61
  • [45] Multi-label feature selection via joint label enhancement and pairwise label correlations
    Liu, Jinghua
    Yang, Songwei
    Lin, Yaojin
    Wang, Chenxi
    Wang, Cheng
    Du, Jixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3943 - 3964
  • [46] Semi-supervised multi-label dimensionality reduction learning based on minimizing redundant correlation of specific and common features
    Li, Runxin
    Zhou, Gaozhi
    Li, Xiaowu
    Jia, Lianyin
    Shang, Zhenhong
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [47] Multi-label feature selection based on label distribution and feature complementarity
    Qian, Wenbin
    Long, Xuandong
    Wang, Yinglong
    Xie, Yonghong
    APPLIED SOFT COMPUTING, 2020, 90
  • [48] Multi-label sampling based on local label imbalance
    Liu, Bin
    Blekas, Konstantinos
    Tsoumakas, Grigorios
    PATTERN RECOGNITION, 2022, 122
  • [49] Imbalance multi-label data learning with label specific features
    Rastogi, Reshma
    Mortaza, Sayed
    NEUROCOMPUTING, 2022, 513 : 395 - 408
  • [50] A Novel Probabilistic Label Enhancement Algorithm for Multi-Label Distribution Learning
    Tan, Chao
    Chen, Sheng
    Ji, Genlin
    Geng, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5098 - 5113