PILLAI'S CONJECTURE FOR POLYNOMIALS

被引:0
作者
Heintze, Sebastian [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Steyrergasse 30-II, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Pillai problem; polynomials; units;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the polynomial version of Pillai's conjecture on the exponential Diophantine equation p(n) - q(m) = f. We prove that for any non-constant polynomial f there are only finitely many quadruples (n, m, deg p, deg q) consisting of integers n, m >= 2 and non-constant polynomials p, q such that Pillai's equation holds. Moreover, we will give some examples that there can still be infinitely many possibilities for the polynomials p, q.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 8 条
[1]   On some exponential equations of S. S. Pillai [J].
Bennett, MA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (05) :897-922
[2]   VANISHING SUMS IN FUNCTION-FIELDS [J].
BROWNAWELL, WD ;
MASSER, DW .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 100 :427-434
[3]   On a variant of Pillai's problem II [J].
Chim, Kwok Chi ;
Pink, Istvan ;
Ziegler, Volker .
JOURNAL OF NUMBER THEORY, 2018, 183 :269-290
[4]   A function field variant of Pillai's problem [J].
Fuchs, Clemens ;
Heintze, Sebastian .
JOURNAL OF NUMBER THEORY, 2021, 222 :278-292
[5]   Decomposable polynomials in second order linear recurrence sequences [J].
Fuchs, Clemens ;
Karolus, Christina ;
Kreso, Dijana .
MANUSCRIPTA MATHEMATICA, 2019, 159 (3-4) :321-346
[6]  
Kreso D., PREPRINTS
[7]  
Mihailescu P, 2004, J REINE ANGEW MATH, V572, P167
[8]  
Pillai SS., 1936, J. Indian Math. Soc. (NS), V2, P119