Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models

被引:10
作者
Capolla, Sara [1 ]
Argenziano, Monica [2 ]
Bozzer, Sara [1 ]
D'Agaro, Tiziana [3 ]
Bittolo, Tamara [3 ]
De Leo, Luigina [4 ]
Not, Tarcisio [4 ]
Busato, Davide [5 ]
Dal Bo, Michele [5 ]
Toffoli, Giuseppe [5 ]
Cavalli, Roberta [2 ]
Gattei, Valter [3 ]
Bomben, Riccardo [3 ]
Macor, Paolo [1 ]
机构
[1] Univ Trieste, Dept Life Sci, Trieste, Italy
[2] Univ Turin, Dept Sci & Tecnol Farmaco, Turin, Italy
[3] Ist Ricovero & Cura Carattere Sci IRCCS, Ctr Riferimento Oncol Aviano CRO, Clin & Expt Onco Hematol Unit, Aviano, Italy
[4] Inst Maternal & Child Hlth, Ist Ricovero & Cura Carattere Sci IRCCS Burlo Garo, Dept Pediat, Trieste, Italy
[5] Ist Ricovero & Cura Carattere Sci IRCCS, Ctr Riferimento Oncol Aviano CRO, Expt & Clin Pharmacol Unit, Aviano, Italy
关键词
lymphoma; miR (microRNA); nanobubble; targeting antibody; animal model; IN-VITRO; DELIVERY-SYSTEMS; NANOPARTICLES; VIVO; BIODISTRIBUTION; CHEMOTHERAPY; COMBINATION; COMPLEMENT; RITUXIMAB; AGENTS;
D O I
10.3389/fimmu.2023.1200310
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionMicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides. MethodsTo overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells. ResultsPositively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects. DiscussionAnti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma [J].
Abdou, Asmaa Gaber ;
Asaad, Nancy ;
Kandil, Mona ;
Shabaan, Mohammed ;
Shams, Asmaa .
CANCER BIOLOGY & MEDICINE, 2017, 14 (02) :151-161
[2]   Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-siRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells [J].
Akbaba, Hasan ;
Erel-Akbaba, Gulsah ;
Kotmakci, Mustafa ;
Baspinar, Yucel .
PHARMACEUTICAL RESEARCH, 2020, 37 (08)
[3]   siRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on in Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and in Vivo Efficacy [J].
Alameh, Mohamad ;
Lavertu, Marc ;
Tran-Khanh, Nicolas ;
Chang, Chi-Yuan ;
Lesage, Frederic ;
Bail, Martine ;
Darras, Vincent ;
Chevrier, Anik ;
Buschmann, Michael D. .
BIOMACROMOLECULES, 2018, 19 (01) :112-131
[4]   An estimate of the total number of true human miRNAs [J].
Alles, Julia ;
Fehlmann, Tobias ;
Fischer, Ulrike ;
Backes, Christina ;
Galata, Valentina ;
Minet, Marie ;
Hart, Martin ;
Abu-Halima, Masood ;
Graesser, Friedrich A. ;
Lenhof, Hans-Peter ;
Keller, Andreas ;
Meese, Eckart .
NUCLEIC ACIDS RESEARCH, 2019, 47 (07) :3353-3364
[5]   Exploring chitosan-shelled nanobubbles to improve HER2+immunotherapy via dendritic cell targeting [J].
Argenziano, Monica ;
Occhipinti, Sergio ;
Scomparin, Anna ;
Angelini, Costanza ;
Novelli, Francesco ;
Soster, Marco ;
Giovarelli, Mirella ;
Cavalli, Roberta .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2022, 12 (08) :2007-2018
[6]   Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma [J].
Argenziano, Monica ;
Bessone, Federica ;
Dianzani, Chiara ;
Cucci, Marie Angele ;
Grattarola, Margherita ;
Pizzimenti, Stefania ;
Cavalli, Roberta .
PHARMACEUTICS, 2022, 14 (02)
[7]   The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target [J].
Baboci, Lorena ;
Capolla, Sara ;
Di Cintio, Federica ;
Colombo, Federico ;
Mauro, Prisca ;
Dal Bo, Michele ;
Argenziano, Monica ;
Cavalli, Roberta ;
Toffoli, Giuseppe ;
Macor, Paolo .
JOURNAL OF ONCOLOGY, 2020, 2020
[8]   Non-viral nanocarriers for intracellular delivery of microRNA therapeutics [J].
Bai, Zhiman ;
Wei, Jing ;
Yu, Changmin ;
Han, Xisi ;
Qin, Xiaofei ;
Zhang, Chengwu ;
Liao, Wenzhen ;
Li, Lin ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY B, 2019, 7 (08) :1209-1225
[9]   RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs [J].
Bajan, Sarah ;
Hutvagner, Gyorgy .
CELLS, 2020, 9 (01)
[10]   In Vivo Biodistribution and Lifetime Analysis of Cy5.5-Conjugated Rituximab in Mice Bearing Lymphoid Tumor Xenograft Using Time-Domain Near-Infrared Optical Imaging [J].
Biffi, Steania ;
Garrovo, Chiara ;
Macor, Paolo ;
Tripodo, Claudio ;
Zorzet, Sonia ;
Secco, Erika ;
Tedesco, Francesco ;
Lorusso, Vito .
MOLECULAR IMAGING, 2008, 7 (06) :272-282