U-Shape Transformer for Underwater Image Enhancement

被引:215
作者
Peng, Lintao [1 ,2 ]
Zhu, Chunli [1 ,2 ]
Bian, Liheng [1 ,2 ]
机构
[1] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[2] Beijing Inst Technol Jiaxing, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金;
关键词
Image color analysis; Visualization; Imaging; Circuit faults; Attenuation; Transformers; Task analysis; Underwater image enhancement; transformer; multi-color space loss function; underwater image dataset; WATER;
D O I
10.1109/TIP.2023.3276332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we built a large scale underwater image (LSUI) dataset, which covers more abundant underwater scenes and better visual quality reference images than existing underwater datasets. The dataset contains 4279 real-world underwater image groups, in which each raw image's clear reference images, semantic segmentation map and medium transmission map are paired correspondingly. We also reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network's attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available at https://bianlab.github.io/.
引用
收藏
页码:3066 / 3079
页数:14
相关论文
共 68 条
  • [1] Sea-thru: A Method For Removing Water From Underwater Images
    Akkaynak, Derya
    Treibitz, Tali
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1682 - 1691
  • [2] Color Balance and Fusion for Underwater Image Enhancement
    Ancuti, Codruta O.
    Ancuti, Cosmin
    De Vleeschouwer, Christophe
    Bekaert, Philippe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 379 - 393
  • [3] Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
  • [4] Berman D., 2017, P BRIT MACHINE VISIO, V1, P1
  • [5] Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset
    Berman, Dana
    Levy, Deborah
    Avidan, Shai
    Treibitz, Tali
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2822 - 2837
  • [6] Carlevaris-Bianco N., 2010, P OC 2010 MTS IEEE S, P1, DOI [10.1109/OCEANS.2010.5664428, DOI 10.1109/OCEANS.2010.5664428]
  • [7] Learning to See in the Dark
    Chen, Chen
    Chen, Qifeng
    Xu, Jia
    Koltun, Vladlen
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3291 - 3300
  • [8] Chen LY, 2022, Arxiv, DOI arXiv:2204.04676
  • [9] Underwater Image Enhancement by Wavelength Compensation and Dehazing
    Chiang, John Y.
    Chen, Ying-Ching
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) : 1756 - 1769
  • [10] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929