HCT-net: hybrid CNN-transformer model based on a neural architecture search network for medical image segmentation

被引:13
作者
Yu, Zhihong [1 ]
Lee, Feifei [1 ,2 ]
Chen, Qiu [3 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai Engn Res Ctr Assist Devices, Sch Med Instrument & Food Engn, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Rehabil Engn & Technol Inst, Shanghai 200093, Peoples R China
[3] Kogakuin Univ, Grad Sch Engn, Elect Engn & Elect, Tokyo 1638677, Japan
关键词
Medical image segmentation; Convolutional neural network (CNN); Transformer; Neural architecture search (NAS);
D O I
10.1007/s10489-023-04570-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering that many manually designed convolutional neural networks (CNNs) for different tasks that require considerable time, labor, and domain knowledge have been designed in the medical image segmentation domain and that most CNN networks only consider local feature information while ignoring the global receptive field due to the convolution limitation, there is still much room for performance improvement. Therefore, designing a new method that can fully capture feature information and save considerable time and human energy with less GPU memory consumption and complexity is necessary. In this paper, we propose a novel hybrid CNN-transformer model based on a neural architecture search network (HCT-Net), which designs a hybrid U-shaped CNN with a key-sampling Transformer backbone that considers contextual and long-range pixel information in the search space and uses a single-path neural architecture search that contains a flexible search space and an efficient search strategy to simultaneously find the optimal subnetwork including three types of cells during SuperNet. Compared with various types of medical image segmentation methods, our framework can achieve competitive precision and efficiency on various datasets, and we also validate the generalization on unseen datasets in extended experiments. In this way, we can verify that our method is competitive and robust. The code for the method is available at .
引用
收藏
页码:19990 / 20006
页数:17
相关论文
共 50 条
  • [31] Cross Attention Multi Scale CNN-Transformer Hybrid Encoder Is General Medical Image Learner
    Zhou, Rongzhou
    Yao, Junfeng
    Hong, Qingqi
    Li, Xingxin
    Cao, Xianpeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 85 - 97
  • [32] DACTransNet: A Hybrid CNN-Transformer Network for Histopathological Image Classification of Pancreatic Cancer
    Kou, Yongqing
    Xia, Cong
    Jiao, Yiping
    Zhang, Daoqiang
    Ge, Rongjun
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 422 - 434
  • [33] HCT-Unet: multi-target medical image segmentation via a hybrid CNN-transformer Unet incorporating multi-axis gated multi-layer perceptron
    Fan, Yazhuo
    Song, Jianhua
    Yuan, Lei
    Jia, Yunlin
    VISUAL COMPUTER, 2024, : 3457 - 3472
  • [34] C-TUnet: A CNN-Transformer Architecture-Based Ultrasound Breast Image Classification Network
    Wu, Ying
    Li, Faming
    Xu, Bo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (01)
  • [35] FFSwinNet: CNN-Transformer Combined Network With FFT for Shale Core SEM Image Segmentation
    Feng, Yilong
    Jia, Lijuan
    Zhang, Jinchuan
    Chen, Junqi
    IEEE ACCESS, 2024, 12 : 73021 - 73032
  • [36] Laser Stripe Segmentation of Weld Seam Based on CNN-Transformer Hybrid Networks
    Wang, Ying
    Gao, Sheng
    Dai, Zhe
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (24):
  • [37] A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer
    Zhang, Zhuo
    Wu, Hongbing
    Zhao, Huan
    Shi, Yicheng
    Wang, Jifang
    Bai, Hua
    Sun, Baoshan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2023, 15 (04) : 663 - 677
  • [38] A Novel Deep Learning Model for Medical Image Segmentation with Convolutional Neural Network and Transformer
    Zhuo Zhang
    Hongbing Wu
    Huan Zhao
    Yicheng Shi
    Jifang Wang
    Hua Bai
    Baoshan Sun
    Interdisciplinary Sciences: Computational Life Sciences, 2023, 15 : 663 - 677
  • [39] HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution
    Wu, Huapeng
    Wang, Chenyun
    Lu, Chenyang
    Zhan, Tianming
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [40] Multi-level wavelet network based on CNN-Transformer hybrid attention for single image deraining
    Liu, Bin
    Fang, Siyan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (30) : 22387 - 22404