Molecular dynamics simulation of surface structure-dependent pyrite wettability in coal flotation

被引:0
作者
Qi, Xin [1 ]
Zhang, Haijun [2 ]
Cong, Xingshun [1 ]
Zhang, Jizhu [3 ]
Li, Min [1 ]
机构
[1] Zaozhuang Univ, Coll Chem, Chem Engn & Mat Sci, Zaozhuang, Peoples R China
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou, Peoples R China
[3] Zhejiang Univ, Shandong Ind Technol Res Inst, Zaozhuang, Peoples R China
关键词
Pyrite; coal; crystal plane; wettability; molecular dynamics simulation; LOW-RANK COAL; INTERFACIAL WATER; ADSORPTION; OXIDATION; CHALCOPYRITE; DEPRESSANT; SEPARATION; MECHANISM; SPODUMENE; COLLECTOR;
D O I
10.1080/08927022.2023.2189988
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Desulphurisation is very critical in coal flotation. Some liberated pyrite particles can float into the clean coal due to entrainment or its own floatability. Based on the wettability experiments, the floatability of (100), (210) and (111) crystal planes of pyrite was further investigated by molecular dynamics simulation in this work. The diethyl phthalate was selected as the oil phase. The adsorption configuration, water/collector concentration distribution and interaction energy were discussed. The results show that the hydrophilic difference between pyrite crystal surfaces and coal surface is large, but the lipophilic difference is small in two-phase system. Both water and oil droplets can be absorbed on pyrite surfaces. Pyrite (210) plane is more hydrophilic due to more active four coordinated iron atoms, while the (111) plane is more oleophilic due to two layers of sulphur atoms on the surface. In addition, oily collector droplet can spread on the pyrite (111) plane and coal surface in aqueous solution. This suggests that pyrite (111) plane has certain floatability in coal flotation. These findings shed light on the root cause of the adverse effect of pyrite on coal flotation and are expected to provide theoretical guidance for flotation desulphurisation.
引用
收藏
页码:769 / 777
页数:9
相关论文
共 50 条
  • [21] Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation
    S. K. Mukesh Kumar
    R. Tamang
    M. Thanigaivelan
    Surface Engineering and Applied Electrochemistry, 2024, 60 : 50 - 57
  • [22] Study of Wettability Behavior of Water Nanodroplets on Platinum Surface by Molecular Dynamics Simulation
    Kumar, Mukesh
    Tamang, S. K.
    Thanigaivelan, R.
    Dabi, M.
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2024, 60 (01) : 50 - 57
  • [23] Molecular Dynamics Simulation of Nanodroplet Impacting on Wettability Gradient Surface
    Pan L.
    Xie X.-Q.
    Guo J.-Y.
    Surface Technology, 2022, 51 (11): : 395 - 404
  • [24] Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation
    Chen, Lei
    Wang, Shan-You
    Xiang, Xing
    Tao, Wen-Quan
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 171 (171)
  • [25] Influence of Air Contact on the Surface Wettability of Coal and Its Filtration and Flotation Properties
    Patrakov, Yu. F.
    Semenova, S. A.
    Yarkova, A. V.
    Klein, M. S.
    COKE AND CHEMISTRY, 2023, 66 (06) : 283 - 288
  • [26] Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets
    Zhao, Kun
    Zhang, Lizhi
    Wang, Jiajun
    Li, Qunxiang
    He, Weiwei
    Yin, Jun Jie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) : 15750 - 15753
  • [27] Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study
    Xia, Yangchao
    Zhang, Rui
    Xing, Yaowen
    Gui, Xiahui
    FUEL, 2019, 235 : 687 - 695
  • [28] Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface: Molecular dynamics simulation and experimental study
    Guo, Jianying
    Zhang, Lei
    Liu, Shengyu
    Li, Bao
    FUEL, 2018, 231 : 449 - 457
  • [29] Effect of surfactant liquid temperature on wettability of bituminous coal: An experimental and molecular dynamics simulation study
    Jiang, Bingyou
    Ji, Ben
    Yuan, Liang
    Yu, Chang-Fei
    Ren, Bo
    Zhou, Gang
    Zheng, Yuannan
    Tao, Wenhan
    Zhu, Yufeng
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 386
  • [30] Influence of Air Contact on the Surface Wettability of Coal and Its Filtration and Flotation Properties
    Yu. F. Patrakov
    S. A. Semenova
    A. V. Yarkova
    M. S. Klein
    Coke and Chemistry, 2023, 66 : 283 - 288