Visualizing Reaction Fronts and Transport Limitations in Solid-State Li-S Batteries via Operando Neutron Imaging

被引:34
作者
Bradbury, Robert [1 ,2 ]
Dewald, Georg F. [3 ]
Kraft, Marvin A. [4 ,5 ]
Arlt, Tobias [1 ]
Kardjilov, Nikolay [2 ]
Janek, Juergen [3 ]
Manke, Ingo [2 ]
Zeier, Wolfgang G. [4 ,5 ,6 ]
Ohno, Saneyuki [7 ]
机构
[1] Tech Univ Berlin, Inst Mat Sci & Technol, Str 17,Juni 135, D-10623 Berlin, Germany
[2] Helmholtz Zent Berlin Materialien & Energie HZB, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[5] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK, IEK 12 Helmholtz Inst Munster, D-48149 Munster, Germany
[6] Univ Munster, Inst Inorgan & Analyt Chem, Correnstr 30, D-48149 Munster, Germany
[7] Kyushu Univ, Grad Sch Engn, Dept Appl Chem, 744 Motooka, Nishi ku, Fukuoka 8190395, Japan
关键词
composite electrodes; in situ neutron tomography; Li-S batteries; operando neutron radiography; solid-state batteries; LITHIUM-ION BATTERIES; RADIOGRAPHY;
D O I
10.1002/aenm.202203426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of high-capacity conversion-type materials such as sulfur in solid-state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate-capability, bottlenecking further development of solid-state lithium-sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate-limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state-of-charge-dependent tomography, highlights a hitherto-overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid-state batteries, irrespective of the type of active material.
引用
收藏
页数:7
相关论文
共 30 条
  • [1] Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries
    Bielefeld, Anja
    Weber, Dominik A.
    Janek, Juergen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) : 12821 - 12833
  • [2] Analysis of Charge Carrier Transport Toward Optimized Cathode Composites for All-Solid-State Li-S Batteries
    Dewald, Georg F.
    Ohno, Saneyuki
    Hering, Joachim G. C.
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. BATTERIES & SUPERCAPS, 2021, 4 (01) : 183 - 194
  • [3] Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes
    Dewald, Georg F.
    Ohno, Saneyuki
    Kraft, Marvin A.
    Koerver, Raimund
    Till, Paul
    Vargas-Barbosa, Nella M.
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (20) : 8328 - 8337
  • [4] Status and prospect of in situ and operando characterization of solid-state batteries
    Dixit, Marm B.
    Park, Jun-Sang
    Kenesei, Peter
    Almer, Jonathan
    Hatzell, Kelsey B.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (09) : 4672 - 4711
  • [5] Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes
    Dixit, Marm B.
    Zaman, Wahid
    Hortance, Nicholas
    Vujic, Stella
    Harkey, Brice
    Shen, Fengyu
    Tsai, Wan-Yu
    De Andrade, Vincent
    Chen, X. Chelsea
    Balke, Nina
    Hatzell, Kelsey B.
    [J]. JOULE, 2020, 4 (01) : 207 - 221
  • [6] Electrochemical processes in all-solid-state Li-S batteries studied by electrochemical impedance spectroscopy
    Fan, Bo
    Guan, Zebo
    Wang, Hongjiao
    Wu, Lilin
    Li, Wenzhi
    Zhang, Shibang
    Xue, Bai
    [J]. SOLID STATE IONICS, 2021, 368
  • [7] In-operando high-speed tomography of lithium-ion batteries during thermal runaway
    Finegan, Donal P.
    Scheel, Mario
    Robinson, James B.
    Tjaden, Bernhard
    Hunt, Ian
    Mason, Thomas J.
    Millichamp, Jason
    Di Michiel, Marco
    Offer, Gregory J.
    Hinds, Gareth
    Brett, Dan J. L.
    Shearing, Paul R.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] In situ neutron radiography of lithium-ion batteries:: the gas evolution on graphite electrodes during the charging
    Goers, D
    Holzapfel, M
    Scheifele, W
    Lehmann, E
    Vontobel, P
    Novák, P
    [J]. JOURNAL OF POWER SOURCES, 2004, 130 (1-2) : 221 - 226
  • [9] Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.141, 10.1038/nenergy.2016.141]
  • [10] Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/nmat2460, 10.1038/NMAT2460]