Investigating spatial scan statistics for multivariate functional data

被引:4
作者
Frevent, Camille [1 ,2 ]
Ahmed, Mohamed-Salem [1 ,3 ]
Dabo-Niang, Sophie [2 ,4 ]
Genin, Michael [1 ]
机构
[1] Univ Lille, CHU Lille, METRICS Evaluat Technol Sante & Prat Med ULR 2694, F-59000 Lille, France
[2] INRIA Lille Nord Europe, MODAL Team, Lille, France
[3] Alicante SARL, Lesquin, France
[4] Univ Lille, CNRS, Lab Paul Painleve UMR 8524, F-59000 Lille, France
关键词
Hotelling T-2-test; MANOVA; multivariate functional data; spatial clusters; spatial scan statistics; Wilcoxon rank-sum test; GENERALIZED LINEAR-MODELS; AIR-POLLUTION; EVENT DETECTION; REGRESSION; MORTALITY; PRECIPITATION; CLUSTERS; AMBIENT;
D O I
10.1093/jrsssc/qlad017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In environmental surveillance, cluster detection of environmental black spots is of major interest due to the adverse health effects of pollutants, as well as their known synergistic effect. Thus, this paper introduces three new spatial scan statistics for multivariate functional data, applicable for detecting clusters of abnormal air pollutants concentrations measured spatially at a very fine scale in northern France in October 2021 taking into account their correlations. Mathematically, our methodology is derived from a functional multivariate analysis of variance, an adaptation of the Hotelling T-2-test statistic, and a multivariate extension of the Wilcoxon test statistic. The approaches were evaluated in a simulation study and then applied to the air pollution dataset.
引用
收藏
页码:450 / 475
页数:26
相关论文
共 127 条
[91]   Recent developments in complex and spatially correlated functional data [J].
Martinez-Hernandez, Israel ;
Genton, Marc G. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (02) :204-229
[92]   A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data [J].
Martino, Andrea ;
Ghiglietti, Andrea ;
Ieva, Francesca ;
Paganoni, Anna Maria .
STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02) :301-322
[93]  
Mateu J., 2021, GEOSTATISTICAL FUNCT
[94]   A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space [J].
Menafoglio, Alessandra ;
Secchi, Piereesare ;
Dalla Rosa, Matilde .
ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 :2209-2240
[95]   A cokriging method for spatial functional data with applications in oceanology [J].
Monestiez, Pascal ;
Nerini, David .
FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, :237-+
[96]   Tropospheric NO2: Explorative analyses of spatial variability and impact factors [J].
Mueller, Inken ;
Erbertseder, Thilo ;
Taubenbock, Hannes .
REMOTE SENSING OF ENVIRONMENT, 2022, 270
[97]   Fast Bayesian scan statistics for multivariate event detection and visualization [J].
Neill, Daniel B. .
STATISTICS IN MEDICINE, 2011, 30 (05) :455-469
[98]   A multivariate Bayesian scan statistic for early event detection and characterization [J].
Neill, Daniel B. ;
Cooper, Gregory F. .
MACHINE LEARNING, 2010, 79 (03) :261-282
[99]   Cokriging for spatial functional data [J].
Nerini, David ;
Monestiez, Pascal ;
Mante, Claude .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) :409-418
[100]   Expert position paper on air pollution and cardiovascular disease [J].
Newby, David E. ;
Mannucci, Pier M. ;
Tell, Grethe S. ;
Baccarelli, Andrea A. ;
Brook, Robert D. ;
Donaldson, Ken ;
Forastiere, Francesco ;
Franchini, Massimo ;
Franco, Oscar H. ;
Graham, Ian ;
Hoek, Gerard ;
Hoffmann, Barbara ;
Hoylaerts, Marc F. ;
Kuenzli, Nino ;
Mills, Nicholas ;
Pekkanen, Juha ;
Peters, Annette ;
Piepoli, Massimo F. ;
Rajagopalan, Sanjay ;
Storey, Robert F. .
EUROPEAN HEART JOURNAL, 2015, 36 (02) :83-U28