Clinical application of artificial intelligence algorithm for prediction of one-year mortality in heart failure patients

被引:3
作者
Takahama, Hiroyuki [1 ,4 ]
Nishimura, Kunihiro [2 ]
Ahsan, Budrul [3 ]
Hamatani, Yasuhiro [5 ]
Makino, Yuichi [3 ]
Nakagawa, Shoko [1 ]
Irie, Yuki [1 ]
Moriuchi, Kenji [1 ]
Amano, Masashi [1 ]
Okada, Atsushi [1 ]
Kitai, Takeshi [1 ]
Amaki, Makoto [1 ]
Kanzaki, Hideaki [1 ]
Noguchi, Teruo [1 ]
Kusano, Kengo [1 ]
Akao, Masaharu [5 ]
Yasuda, Satoshi [1 ,4 ]
Izumi, Chisato [1 ]
机构
[1] Natl Cerebral Cardiovasc Ctr, Dept Cardiovasc Med, Suita 5648565, Japan
[2] Natl Cerebral Cardiovasc Ctr, Dept Prevent Med & Epidemiol, Suita 5648565, Japan
[3] Philips Japan, Tokyo 1088507, Japan
[4] Tohoku Univ, Dept Cardiovasc Med, Grad Sch Med, Sendai 9808574, Japan
[5] Natl Hosp Org, Dept Cardiol, Kyoto Med Ctr, Kyoto 6128555, Japan
关键词
Heart failure; Machine learning; Risk prediction; Prognosis; RISK STRATIFICATION; MODEL; ASSOCIATION; GUIDELINES; SURVIVAL; SCORE;
D O I
10.1007/s00380-023-02237-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Risk prediction for heart failure (HF) using machine learning methods (MLM) has not yet been established at practical application levels in clinical settings. This study aimed to create a new risk prediction model for HF with a minimum number of predictor variables using MLM. We used two datasets of hospitalized HF patients: retrospective data for creating the model and prospectively registered data for model validation. Critical clinical events (CCEs) were defined as death or LV assist device implantation within 1 year from the discharge date. We randomly divided the retrospective data into training and testing datasets and created a risk prediction model based on the training dataset (MLM-risk model). The prediction model was validated using both the testing dataset and the prospectively registered data. Finally, we compared predictive power with published conventional risk models. In the patients with HF (n = 987), CCEs occurred in 142 patients. In the testing dataset, the substantial predictive power of the MLM-risk model was obtained (AUC = 0.87). We generated the model using 15 variables. Our MLM-risk model showed superior predictive power in the prospective study compared to conventional risk models such as the Seattle Heart Failure Model (c-statistics: 0.86 vs. 0.68, p < 0.05). Notably, the model with an input variable number (n = 5) has comparable predictive power for CCE with the model (variable number = 15). This study developed and validated a model with minimized variables to predict mortality more accurately in patients with HF, using a MLM, than the existing risk scores.
引用
收藏
页码:785 / 792
页数:8
相关论文
共 29 条
[1]   From statistical significance to clinical relevance: A simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure [J].
AbouEzzeddine, Omar F. ;
French, Benjamin ;
Mirzoyev, Sultan A. ;
Jaffe, Allan S. ;
Levy, Wayne C. ;
Fang, James C. ;
Sweitzer, Nancy K. ;
Cappola, Thomas P. ;
Redfield, Margaret M. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2016, 35 (06) :714-721
[2]   Improving risk prediction in heart failure using machine learning [J].
Adler, Eric D. ;
Voors, Adriaan A. ;
Klein, Liviu ;
Macheret, Fima ;
Braun, Oscar O. ;
Urey, Marcus A. ;
Zhu, Wenhong ;
Sama, Iziah ;
Tadel, Matevz ;
Campagnari, Claudio ;
Greenberg, Barry ;
Yagil, Avi .
EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) :139-147
[3]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[4]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[5]   Improvements of predictive power of B-type natriuretic peptide on admission by mathematically estimating its discharge levels in hospitalised patients with acute heart failure [J].
Anegawa, Eiji ;
Takahama, Hiroyuki ;
Nishimura, Kunihiro ;
Onozuka, Daisuke ;
Irie, Yuki ;
Moriuchi, Kenji ;
Amano, Masashi ;
Okada, Atsushi ;
Amaki, Makoto ;
Kanzaki, Hideaki ;
Noguchi, Teruo ;
Kusano, Kengo ;
Yasuda, Satoshi ;
Izumi, Chisato .
OPEN HEART, 2021, 8 (01)
[6]   Acute heart failure [J].
Arrigo, Mattia ;
Jessup, Mariell ;
Mullens, Wilfried ;
Reza, Nosheen ;
Shah, Ajay M. ;
Sliwa, Karen ;
Mebazaa, Alexandre .
NATURE REVIEWS DISEASE PRIMERS, 2020, 6 (01)
[7]   Risk stratification based on nutritional screening on admission: Three-year clinical outcomes in hospitalized patients with acute heart failure syndrome [J].
Fujino, Masashi ;
Takahama, Hiroyuki ;
Hamasaki, Toshimitsu ;
Sekiguchi, Kenichi ;
Kusano, Kengo ;
Anzai, Toshihisa ;
Noguchi, Teruo ;
Goto, Yoichi ;
Kitakaze, Masafumi ;
Yokoyama, Hiroyuki ;
Ogawa, Hisao ;
Yasuda, Satoshi .
JOURNAL OF CARDIOLOGY, 2016, 68 (5-6) :392-398
[8]   Mode of Death in Patients With Heart Failure and Reduced vs. Preserved Ejection Fraction - Report From the Registry of Hospitalized Heart Failure Patients [J].
Hamaguchi, Sanae ;
Kinugawa, Shintaro ;
Sobirin, Mochamad Ali ;
Goto, Daisuke ;
Tsuchihashi-Makaya, Miyuki ;
Yamada, Satoshi ;
Yokoshiki, Hisashi ;
Tsutsui, Hiroyuki .
CIRCULATION JOURNAL, 2012, 76 (07) :1662-1669
[9]   Pathophysiological impact of serum fibroblast growth factor 23 in patients with nonischemic cardiac disease and early chronic kidney disease [J].
Imazu, Miki ;
Takahama, Hiroyuki ;
Asanuma, Hiroshi ;
Funada, Akira ;
Sugano, Yasuo ;
Ohara, Takahiro ;
Hasegawa, Takuya ;
Asakura, Masanori ;
Kanzaki, Hideaki ;
Anzai, Toshihisa ;
Kitakaze, Masafumi .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2014, 307 (10) :H1504-H1511
[10]   A Machine Learning Approach to Management of Heart Failure Populations [J].
Jing, Linyuan ;
Cerna, Alvaro E. Ulloa ;
Good, Christopher W. ;
Sauers, Nathan M. ;
Schneider, Gargi ;
Hartzel, Dustin N. ;
Leader, Joseph B. ;
Kirchner, H. Lester ;
Hu, Yirui ;
Riviello, David M. ;
Stough, Joshua V. ;
Gazes, Seth ;
Haggerty, Allyson ;
Raghunath, Sushravya ;
Carry, Brendan J. ;
Haggerty, Christopher M. ;
Fornwalt, Brandon K. .
JACC-HEART FAILURE, 2020, 8 (07) :578-587