Chest X-ray in Emergency Radiology: What Artificial Intelligence Applications Are Available?

被引:20
作者
Irmici, Giovanni [1 ]
Ce, Maurizio [1 ]
Caloro, Elena [1 ]
Khenkina, Natallia [1 ]
Della Pepa, Gianmarco [1 ]
Ascenti, Velio [1 ]
Martinenghi, Carlo [2 ]
Papa, Sergio [3 ]
Oliva, Giancarlo [4 ]
Cellina, Michaela [4 ]
机构
[1] Univ Milan, Postgrad Sch Radiodiagnost, Via Festa Perdono 7, I-20122 Milan, Italy
[2] Osped San Raffaele, Radiol Dept, Via Olgettina 60, I-20132 Milan, Italy
[3] Ctr Diagnost Italiano, Unit Diagnost Imaging & Stereotact Radiosurg, Via St Bon 20, I-20147 Milan, Italy
[4] Fatebenefratelli Hosp, Radiol Dept, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, I-20121 Milan, Italy
关键词
artificial intelligence; chest X-ray; emergency radiology; deep learning; chest radiography; DEEP NEURAL-NETWORK; CARDIOTHORACIC RATIO; IMAGES; COVID-19; MODEL; OPPORTUNITIES;
D O I
10.3390/diagnostics13020216
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Due to its widespread availability, low cost, feasibility at the patient's bedside and accessibility even in low-resource settings, chest X-ray is one of the most requested examinations in radiology departments. Whilst it provides essential information on thoracic pathology, it can be difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diagnostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropriateness of the therapy. This review article aims to provide an overview of the applications of AI for chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax, pneumonia, heart failure, and pleural effusion.
引用
收藏
页数:18
相关论文
共 99 条
  • [1] Artificial Intelligence Solutions for Analysis of X-ray Images
    Adams, Scott J.
    Henderson, Robert D. E.
    Yi, Xin
    Babyn, Paul
    [J]. CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2021, 72 (01): : 60 - 72
  • [2] Association of Artificial Intelligence-Aided Chest Radiograph Interpretation With Reader Performance and Efficiency
    Ahn, Jong Seok
    Ebrahimian, Shadi
    McDermott, Shaunagh
    Lee, Sanghyup
    Naccarato, Laura
    Di Capua, John F.
    Wu, Markus Y.
    Zhang, Eric W.
    Muse, Victorine
    Miller, Benjamin
    Sabzalipour, Farid
    Bizzo, Bernardo C.
    Dreyer, Keith J.
    Kaviani, Parisa
    Digumarthy, Subba R.
    Kalra, Mannudeep K.
    [J]. JAMA NETWORK OPEN, 2022, 5 (08) : E2229289
  • [3] Use of artificial intelligence in emergency radiology: An overview of current applications, challenges, and opportunities
    Al-Dasuqi, Khalid
    Johnson, Michele H.
    Cavallo, Joseph J.
    [J]. CLINICAL IMAGING, 2022, 89 : 61 - 67
  • [4] Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks
    Annarumma, Mauro
    Withey, Samuel J.
    Bakewell, Robert J.
    Pesce, Emanuele
    Goh, Vicky
    Montana, Giovanni
    [J]. RADIOLOGY, 2019, 291 (01) : 195 - 201
  • [5] The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare
    Aung, Yuri Y. M.
    Wong, David C. S.
    Ting, Daniel S. W.
    [J]. BRITISH MEDICAL BULLETIN, 2021, 139 (01) : 4 - 15
  • [6] Artificial intelligence on COVID-19 pneumonia detection using chest xray images
    Baltazar, Lei Rigi
    Manzanillo, Mojhune Gabriel
    Gaudillo, Joverlyn
    Viray, Ethel Dominique
    Domingo, Mario
    Tiangco, Beatrice
    Albia, Jason
    [J]. PLOS ONE, 2021, 16 (10):
  • [7] Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation
    Baltruschat, Ivo
    Steinmeister, Leonhard
    Nickisch, Hannes
    Saalbach, Axel
    Grass, Michael
    Adam, Gerhard
    Knopp, Tobias
    Ittrich, Harald
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (06) : 3837 - 3845
  • [8] Artificial Intelligence Enabling Radiology Reporting
    Bizzo, Bernardo C.
    Almeida, Renata R.
    Alkasab, Tarik K.
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (06) : 1045 - 1052
  • [9] Blumenfeld A., 2018, P MEDICAL IMAGING 20, P3
  • [10] Chest X-ray versus chest computed tomography for outcome prediction in hospitalized patients with COVID-19
    Borghesi, Andrea
    Golemi, Salvatore
    Scrimieri, Alessandra
    Nicosia, Costanza Maria Carlotta
    Zigliani, Angelo
    Farina, Davide
    Maroldi, Roberto
    [J]. RADIOLOGIA MEDICA, 2022, 127 (03): : 305 - 308