Sc/Zr ratio-dependent mechanisms of strength evolution and microstructural thermal stability of multi-scale hetero-structured Al-Mg-Sc-Zr alloys

被引:31
作者
Zha, Min [1 ,2 ,4 ,5 ]
Tian, Teng [1 ,2 ]
Jia, Hai-Long [1 ,2 ,4 ,5 ]
Zhang, Hong-Min [3 ]
Wang, Hui-Yuan [1 ,2 ,4 ,5 ]
机构
[1] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Nanling Campus, Changchun 130025, Peoples R China
[2] Jilin Univ, Sch Mat Sci & Engn, Nanling Campus, Changchun 130025, Peoples R China
[3] Changzhou Univ, Sch Mech Engn & Rail Transit, Changzhou 213164, Peoples R China
[4] Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
[5] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2023年 / 140卷
关键词
Al-Mg alloys; Al 3 (Sc; Zr); Strength; Thermal stability; Bimodal grain structure; GRAIN-BOUNDARY SEGREGATION; CREEP RESISTANCE; AL-7MG ALLOY; SI ALLOY; PRECIPITATION; DUCTILITY; BEHAVIOR; GROWTH; REFINEMENT; KINETICS;
D O I
10.1016/j.jmst.2022.09.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microstructure and its thermal stability are critical in the development of high-performance Al-Mg alloys. Here, we attempt to tailor Al3(Sc,Zr) precipitates and thus microstructure characteristics to manipulate mechanical properties and microstructural stability of Al-7Mg alloys fabricated by hot extrusion com-bined with two-pass hard-plate rolling via changing Sc/Zr ratio. Increasing Sc/Zr ratio leads to improved strength without any loss of ductility. A strength-ductility synergy, i.e. yield strength of-548 MPa and ultimate tensile strength of-605 MPa with an impressive ductility of-10% elongation was achieved in the Al-7Mg-0.3Sc-0.1Zr alloy. The good strength-ductility synergy is ascribed to the multi-scale het-erogeneous microstructure promoted by the high Sc/Zr ratio, i.e. a bimodal grain structure, profuse low angle grain boundaries, dispersed nano-sized Al3(Sc,Zr) precipitates coexisting with intragranular Mg-Zr co-clusters segregated at dislocations. Upon thermal exposure, the Al-7Mg-0.3Sc-0.1Zr alloy maintained higher hardness at below 250 degrees C, whereas Al-7Mg-0.2Sc-0.2Zr and Al-7Mg-0.1Sc-0.3Zr alloys exhibited higher hardness in moderate-and high-temperature range of 250-350 degrees C and >= 400 degrees C, respectively. Atom-probe tomography analysis illustrates that slow-diffusing Zr atoms enhance Al3(Sc,Zr) coarsening resistance through forming a higher-content Zr-enriched protective shell around a Sc-enriched core in Al-7Mg-0.1Sc-0.3Zr. Meanwhile, the high Zr content promotes concurrent Al3(Sc,Zr) precipitation during thermal exposure at high temperatures. The improved microstructural thermal stability in Al-7Mg-0.1Sc- 0.3Zr alloy is further discussed in terms of the recrystallization resistance and grain growth behavior. The present study reveals the feasibility for designing high-strength and thermally stable hetero-structured Al-Mg-Sc-Zr alloys via tailoring Sc/Zr ratios for different application temperature ranges. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 67 条
[31]   Imparting high-temperature grain stability to an Al-Mg alloy [J].
Pariyar, Abhishek ;
Toth, Laszlo S. ;
Kailas, Satish, V ;
Peltier, Laurent .
SCRIPTA MATERIALIA, 2021, 190 :141-146
[32]   Solute-vacancy clustering in aluminum [J].
Peng, Jian ;
Bahl, Sumit ;
Shyam, Amit ;
Haynes, J. Allen ;
Shin, Dongwon .
ACTA MATERIALIA, 2020, 196 :747-758
[33]   A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium [J].
Robson, JD .
ACTA MATERIALIA, 2004, 52 (06) :1409-1421
[34]   Thermal stability in bulk cryomilled ultrafine-grained 5083 Al alloy [J].
Roy, I ;
Chauhan, M ;
Lavernia, EJ ;
Mohamed, FA .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (03) :721-730
[35]   Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy [J].
Sauvage, X. ;
Enikeev, N. ;
Valiev, R. ;
Nasedkina, Y. ;
Murashkin, M. .
ACTA MATERIALIA, 2014, 72 :125-136
[36]   MECHANICAL-PROPERTIES AND MICROSTRUCTURES OF AL-MG-SC ALLOYS [J].
SAWTELL, RR ;
JENSEN, CL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (02) :421-430
[37]   Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J].
Seidman, DN ;
Marquis, EA ;
Dunand, DC .
ACTA MATERIALIA, 2002, 50 (16) :4021-4035
[38]   Ultrafine-grained Al-0.2Sc-0.1Zr alloy: The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion [J].
Shen, Y. F. ;
Guan, R. G. ;
Zhao, Z. Y. ;
Misra, R. D. K. .
ACTA MATERIALIA, 2015, 100 :247-255
[39]   Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature [J].
Sitdikov, O. ;
Sakai, T. ;
Avtokratova, E. ;
Kaibyshev, R. ;
Tsuzaki, K. ;
Watanabe, Y. .
ACTA MATERIALIA, 2008, 56 (04) :821-834
[40]   Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy [J].
Song, Z. Z. ;
Niu, R. M. ;
Cui, X. Y. ;
Bobruk, E. V. ;
Murashkin, M. ;
Enikeev, N. A. ;
Valiev, R. Z. ;
Ringer, S. P. ;
Liao, X. Z. .
SCRIPTA MATERIALIA, 2022, 210