Embedding and the rotational dimension of a graph containing a clique

被引:0
作者
Gomyou, Takumi [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Embedding; Laplacian; clique; graph minor;
D O I
10.1142/S1793830922500616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rotational dimension is a minor-monotone graph invariant related to the dimension of a Euclidean space containing a spectral embedding corresponding to the first nonzero eigenvalue of the graph Laplacian, which is introduced by Goring, Helmberg and Wappler. In this paper, we study rotational dimensions of graphs which contain large complete graphs. The complete graph is characterized by its rotational dimension. It will be obtained that a chordal graph may he made large while keeping the rotational dimension constant.
引用
收藏
页数:13
相关论文
共 7 条
  • [1] A partial k-arboretum of graphs with bounded treewidth
    Bodlaender, HL
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) : 1 - 45
  • [2] Boyd S., 2004, Convex Optimization, DOI 10.1017/CBO9780511804441
  • [3] Fiedler M., 1989, COMBINATORICS GRAPH, V25, P57
  • [4] Embedded in the shadow of the separator
    Goering, Frank
    Helmberg, Christoph
    Wappler, Markus
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 472 - 501
  • [5] The Rotational Dimension of a Graph
    Goering, Frank
    Helmberg, Christoph
    Wappler, Markus
    [J]. JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 283 - 302
  • [6] Van der Holst H, 1999, BOLYAI MATH STUD, V7, P29
  • [7] ON A MINOR-MONOTONE GRAPH INVARIANT
    VANDERHOLST, H
    LAURENT, M
    SCHRIJVER, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (02) : 291 - 304