Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy

被引:24
作者
Kim, Yelee [1 ,2 ]
Choi, Jiwoong [1 ]
Kim, Eun Hye [1 ,2 ]
Park, Wonbeom [3 ]
Jang, Hochung [1 ,4 ]
Jang, Yeongji [1 ,2 ]
Chi, Sung-Gil [2 ]
Kweon, Dae-Hyuk [3 ]
Lee, Kyuri [5 ,6 ]
Kim, Sun Hwa [1 ,7 ]
Yang, Yoosoo [1 ,4 ]
机构
[1] Korea Inst Sci & Technol KIST, Biomed Res Div, Seoul 02792, South Korea
[2] Korea Univ, Dept Life Sci, Seoul 02841, South Korea
[3] Sungkyunkwan Univ, Dept Integrat Biotechnol, Suwon 16419, South Korea
[4] Korea Univ Sci & Technol, KIST Sch, Div Biomed Sci & Technol, Seoul 02792, South Korea
[5] Gyeongsang Natl Univ, Coll Pharm, Jinju 52828, South Korea
[6] Gyeongsang Natl Univ, Res Inst Pharmaceut Sci, Jinju 52828, South Korea
[7] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
cancer immunotherapy; lipid nanoparticle; mRNA delivery; tumor-targeted delivery; MESSENGER-RNA DELIVERY; ANTI-PD-L1; PEPTIDE; MEDIATED DELIVERY; IMMUNE-RESPONSES; PD-L1; EXPRESSION; GENE-THERAPY; TUMOR-GROWTH; AUTOPHAGY; PROSTATE; SURVIVAL;
D O I
10.1002/advs.202309917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy. This study investigates a targeted delivery method for cancer therapy, using programmed death ligand 1 (PD-L1)-targeting lipid nanoparticles (LNPs) with PD-L1 binding peptides attached via a copper-free click reaction. This approach turns on phosphatase and tensin homolog (PTEN) in triple-negative breast cancers (TNBCs), boosting autophagy, inducing immunogenic cell death (ICD)-associated damage-associated molecular patterns (DAMPs), promoting dendritic cell (DC) maturation, and facilitating T-cell migration to tumors. This findings highlight the promising potential of mRNA-based cancer therapy using these targeted LNPs. image
引用
收藏
页数:15
相关论文
共 70 条
[51]   All-in-one glycol chitosan nanoparticles for co-delivery of doxorubicin and anti-PD-L1 peptide in cancer immunotherapy [J].
Song, Sukyung ;
Shim, Man Kyu ;
Yang, Suah ;
Lee, Jaewan ;
Yun, Wan Su ;
Cho, Hanhee ;
Moon, Yujeong ;
Min, Jin Young ;
Han, Eun Hee ;
Yoon, Hong Yeol ;
Kim, Kwangmeyung .
BIOACTIVE MATERIALS, 2023, 28 :358-375
[52]   Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN [J].
Stambolic, V ;
Suzuki, A ;
de la Pompa, JL ;
Brothers, GM ;
Mirtsos, C ;
Sasaki, T ;
Ruland, J ;
Penninger, JM ;
Siderovski, DP ;
Mak, TW .
CELL, 1998, 95 (01) :29-39
[53]   In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles [J].
Su, Fang-Yi ;
Zhao, Qingyang Henry ;
Dahotre, Shreyas N. ;
Gamboa, Lena ;
Bawage, Swapnil Subhash ;
Trenkle, Aaron D. Silva ;
Zamat, Ali ;
Phuengkham, Hathaichanok ;
Ahmed, Rafi ;
Santangelo, Philip J. ;
Kwong, Gabriel A. .
SCIENCE ADVANCES, 2022, 8 (08)
[54]   Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs [J].
Suzuki, Yuta ;
Ishihara, Hiroshi .
DRUG METABOLISM AND PHARMACOKINETICS, 2021, 41
[55]   Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement [J].
Tenchov, Rumiana ;
Bird, Robert ;
Curtze, Allison E. ;
Zhou, Qiongqiong .
ACS NANO, 2021, 15 (11) :16982-17015
[56]   Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma [J].
Ternovoi, Vladimir V. ;
T Curiel, David ;
Smith, Bruce F. ;
Siegal, Gene P. .
LABORATORY INVESTIGATION, 2006, 86 (08) :748-766
[57]   Synthetic therapeutic peptides: science and market [J].
Vlieghe, Patrick ;
Lisowski, Vincent ;
Martinez, Jean ;
Khrestchatisky, Michel .
DRUG DISCOVERY TODAY, 2010, 15 (1-2) :40-56
[58]   Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury [J].
Waggoner, Lauren E. E. ;
Miyasaki, Katelyn F. F. ;
Kwon, Ester J. J. .
BIOMATERIALS SCIENCE, 2023, 11 (12) :4238-4253
[59]   Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients [J].
Wang, Qian-Ting ;
Nie, Ying ;
Sun, Sheng-Nan ;
Lin, Tao ;
Han, Ru-Jin ;
Jiang, Jun ;
Li, Zhe ;
Li, Jun-Qi ;
Xiao, Yun-Peng ;
Fan, Yu-Ying ;
Yuan, Xiao-Hui ;
Zhang, Hui ;
Zhao, Bin-Bin ;
Zeng, Ming ;
Li, Shi-You ;
Liao, Hua-Xin ;
Zhang, Jian ;
He, You-Wen .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2020, 69 (07) :1375-1387
[60]   Fundamental Mechanisms of Immune Checkpoint Blockade Therapy [J].
Wei, Spencer C. ;
Duffy, Colm R. ;
Allison, James P. .
CANCER DISCOVERY, 2018, 8 (09) :1069-1086