Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries

被引:24
作者
Zhu, Jie [1 ,3 ]
Chen, Junxue [1 ]
Li, Xida [1 ]
Luo, Kun [4 ]
Xiong, Zewei [5 ]
Zhou, Zhiyu [1 ]
Zhu, Wenyun [1 ]
Luo, Zhihong [1 ]
Huang, Jingbin [2 ]
Li, Yibing [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541000, Guangxi, Peoples R China
[2] Zhoukou Normal Univ, Key Lab Rare Earth Funct Mat & Applicat, Zhoukou 466001, Henan, Peoples R China
[3] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
[4] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China
[5] Wuhan Sunmoon Battery Co Ltd, Wuhan 430090, Hubei, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 92卷
关键词
Electrocatalyst; Oxygen evolution reaction; Surface reconstruction; Selective etching; Amorphous-crystalline heterostructures; ELECTROCATALYSTS; NANOPARTICLES; PERFORMANCE; STABILITY; OXIDATION;
D O I
10.1016/j.jechem.2024.01.020
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction (OER) conditions; however, rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge. Here, an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide (CoMoO4/Co3O4@CC) in a favorable direction to improve the OER performance. Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching, with the formation of a dynamically stable amorphous-crystalline heterostructure. Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co3O4 are crucial in enhancing the catalytic performance. Consequently, the reconstructed CoMoO4/Co3O4@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm-2 in 1 M KOH, and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices, achieving ultra-long stability for over 500 and 1200 h, respectively. This work provides a promising route for the construction of high performance electrocatalysts. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 52 条
[31]   Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers [J].
Shi, Zhaoping ;
Li, Ji ;
Wang, Yibo ;
Liu, Shiwei ;
Zhu, Jianbing ;
Yang, Jiahao ;
Wang, Xian ;
Ni, Jing ;
Jiang, Zheng ;
Zhang, Lijuan ;
Wang, Ying ;
Liu, Changpeng ;
Xing, Wei ;
Ge, Junjie .
NATURE COMMUNICATIONS, 2023, 14 (01)
[32]   Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives [J].
Suen, Nian-Tzu ;
Hung, Sung-Fu ;
Quan, Quan ;
Zhang, Nan ;
Xu, Yi-Jun ;
Chen, Hao Ming .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (02) :337-365
[33]   Engineering Crystallinity and Oxygen Vacancies of Co(II) Oxide Nanosheets for High Performance and Robust Rechargeable Zn-Air Batteries [J].
Tian, Yuhui ;
Liu, Xiaozhi ;
Xu, Li ;
Yuan, Ding ;
Dou, Yuhai ;
Qiu, Jingxia ;
Li, Henan ;
Ma, Jianmin ;
Wang, Yun ;
Su, Dong ;
Zhang, Shanqing .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (20)
[34]   Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution [J].
Tung, Ching-Wei ;
Hsu, Ying-Ya ;
Shen, Yen-Ping ;
Zheng, Yixin ;
Chan, Ting-Shan ;
Sheu, Hwo-Shuenn ;
Cheng, Yuan-Chung ;
Chen, Hao Ming .
NATURE COMMUNICATIONS, 2015, 6
[35]   Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation [J].
Wang, Jian ;
Kim, Se-Jun ;
Liu, Jiapeng ;
Gao, Yang ;
Choi, Subin ;
Han, Jeongwoo ;
Shin, Hyeyoung ;
Jo, Sugeun ;
Kim, Juwon ;
Ciucci, Francesco ;
Kim, Hwiho ;
Li, Qingtian ;
Yang, Wanli ;
Long, Xia ;
Yang, Shihe ;
Cho, Sung-Pyo ;
Chae, Keun Hwa ;
Kim, Min Gyu ;
Kim, Hyungjun ;
Lim, Jongwoo .
NATURE CATALYSIS, 2021, 4 (03) :212-222
[36]   Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting [J].
Wang, Jing ;
Hu, Jing ;
Liang, Ce ;
Chang, Limin ;
Du, Yunchen ;
Han, Xijiang ;
Sun, Jianmin ;
Xu, Ping .
CHEMICAL ENGINEERING JOURNAL, 2022, 446
[37]   Crystalline-Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction [J].
Wang, Jing ;
Hu, Jing ;
Niu, Siqi ;
Li, Siwei ;
Du, Yunchen ;
Xu, Ping .
SMALL, 2022, 18 (10)
[38]   Amorphous Mo-doped NiS0.5Se0.5 Nanosheets@Crystalline NiS0.5Se0.5 Nanorods for High Current-density Electrocatalytic Water Splitting in Neutral Media [J].
Wang, Yang ;
Li, Xiaopeng ;
Huang, Zhong ;
Wang, Haozhi ;
Chen, Zelin ;
Zhang, Jinfeng ;
Zheng, Xuerong ;
Deng, Yida ;
Hu, Wenbin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (06)
[39]   Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction [J].
Xiao, Zhaohui ;
Huang, Yu-Cheng ;
Dong, Chung-Li ;
Xie, Chao ;
Liu, Zhijuan ;
Du, Shiqian ;
Chen, Wei ;
Yan, Dafeng ;
Tao, Li ;
Shu, Zhiwen ;
Zhang, Guanhua ;
Duan, Huigao ;
Wang, Yanyong ;
Zou, Yuqin ;
Chen, Ru ;
Wang, Shuangyin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) :12087-12095
[40]   Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Perovskite in Energy Storage and Conversion: Past, Present, and Future [J].
Xu, Xiaomin ;
Su, Chao ;
Shao, Zongping .
ENERGY & FUELS, 2021, 35 (17) :13585-13609