Few-Shot Speaker Identification Using Lightweight Prototypical Network With Feature Grouping and Interaction

被引:4
|
作者
Li, Yanxiong [1 ]
Chen, Hao [1 ]
Cao, Wenchang [1 ]
Huang, Qisheng [1 ]
He, Qianhua [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature grouping; feature interaction; few-shot learning; prototypical network; speaker identification; RECOGNITION; VERIFICATION; ATTENTION;
D O I
10.1109/TMM.2023.3253301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for few-shot speaker identification (FSSI) obtain high accuracy, but their computational complexities and model sizes need to be reduced for lightweight applications. In this work, we propose a FSSI method using a lightweight prototypical network with the final goal to implement the FSSI on intelligent terminals with limited resources, such as smart watches and smart speakers. In the proposed prototypical network, an embedding module is designed to perform feature grouping for reducing the memory requirement and computational complexity, and feature interaction for enhancing the representational ability of the learned speaker embedding. In the proposed embedding module, audio feature of each speech sample is split into several low-dimensional feature subsets that are transformed by a recurrent convolutional block in parallel. Then, the operations of averaging, addition, concatenation, element-wise summation and statistics pooling are sequentially executed to learn a speaker embedding for each speech sample. The recurrent convolutional block consists of a block of bidirectional long short-term memory, and a block of de-redundancy convolution in which feature grouping and interaction are conducted too. Our method is compared to baseline methods on three datasets that are selected from three public speech corpora (VoxCeleb1, VoxCeleb2, and LibriSpeech). The results show that our method obtains higher accuracy under several conditions, and has advantages over all baseline methods in computational complexity and model size.
引用
收藏
页码:9241 / 9253
页数:13
相关论文
共 50 条
  • [21] Few-Shot Learning Sensitive Recognition Method Based on Prototypical Network
    Yuan, Guoquan
    Zhao, Xinjian
    Li, Liu
    Zhang, Song
    Wei, Shanming
    MATHEMATICS, 2024, 12 (17)
  • [22] FEW-SHOT RADAR HRRP RECOGNITION BASED ON IMPROVED PROTOTYPICAL NETWORK
    Li, Jixi
    Li, Dongying
    Jiang, Yong
    Yu, Wenxian
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5277 - 5280
  • [23] Transductive Prototypical Attention Network for Few-shot SAR Target Recognition
    Yu, Xuelian
    Liu, Sen
    Ren, Haohao
    Zou, Lin
    Zhou, Yun
    Wang, Xuegang
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [24] Self-regularized prototypical network for few-shot semantic segmentation
    Ding, Henghui
    Zhang, Hui
    Jiang, Xudong
    PATTERN RECOGNITION, 2023, 133
  • [25] Few-shot re-identification of the speaker by social robots
    Pasquale Foggia
    Antonio Greco
    Antonio Roberto
    Alessia Saggese
    Mario Vento
    Autonomous Robots, 2023, 47 : 181 - 192
  • [26] Multidomain variance-learnable prototypical network for few-shot diagnosis of novel faults
    Long, Jianyu
    Chen, Yibin
    Huang, Huiyu
    Yang, Zhe
    Huang, Yunwei
    Li, Chuan
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (04) : 1455 - 1467
  • [27] Few-shot image recognition based on multi-scale features prototypical network
    Liu, Jiatong
    Duan, Yong
    High Technology Letters, 2024, 30 (03) : 280 - 289
  • [28] Disentangled Prototypical Convolutional Network for Few-Shot Learning in In-Vehicle Noise Classification
    Kee, Robin Inho
    Nam, Dahyun
    Buu, Seok-Jun
    Cho, Sung-Bae
    IEEE ACCESS, 2024, 12 : 66801 - 66808
  • [29] An attention-based prototypical network for forest fire smoke few-shot detection
    Tingting Li
    Haowei Zhu
    Chunhe Hu
    Junguo Zhang
    Journal of Forestry Research, 2022, 33 : 1493 - 1504
  • [30] An attention-based prototypical network for forest fire smoke few-shot detection
    Li, Tingting
    Zhu, Haowei
    Hu, Chunhe
    Zhang, Junguo
    JOURNAL OF FORESTRY RESEARCH, 2022, 33 (05) : 1493 - 1504