The backward problem for time-fractional evolution equations

被引:5
作者
Chorfi, S. E. [1 ]
Maniar, L. [1 ]
Yamamoto, M. [2 ,3 ,4 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, LMDP, UMMISCO IRD UPMC, Marrakech, Morocco
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
[3] Acad Romanian Scientists, Bucharest, Romania
[4] Palazzo Univ, Acad Peloritana Pericolanti, Messina, Italy
关键词
Fractional evolution equation; backward problem; logarithmic convexity; Holder stability; NULL CONTROLLABILITY; RECONSTRUCTION;
D O I
10.1080/00036811.2023.2290273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward problem for fractional in time evolution equations partial derivative(alpha)(t)u(t) = Au(t) with the Caputo derivative of order 0 < alpha <= 1, where A is a self-adjoint and bounded above operator on a Hilbert space H. First, we extend the logarithmic convexity technique to the fractional framework by analyzing the properties of the Mittag-Leffler functions. Then we prove conditional stability estimates of H & ouml;lder type for initial conditions under a weaker norm of the final data. Finally, we give several applications to show the applicability of our abstract results.
引用
收藏
页码:2194 / 2212
页数:19
相关论文
共 31 条
[1]   FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS [J].
ADAMS, EE ;
GELHAR, LW .
WATER RESOURCES RESEARCH, 1992, 28 (12) :3293-3307
[2]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[3]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[4]   An inverse problem of radiative potentials and initial temperatures in parabolic equations with dynamic boundary conditions [J].
Ben Hassi, El Mustapha Ait ;
Chorfi, Salah-Eddine ;
Maniar, Lahcen .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (03) :363-378
[5]   Degenerate self-adjoint evolution equations on the unit interval [J].
Campiti, M ;
Metafune, G ;
Pallara, D .
SEMIGROUP FORUM, 1998, 57 (01) :1-36
[6]  
Cannarsa P, 2005, ADV DIFFERENTIAL EQU, V10, P153
[7]   One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization [J].
Cheng, J ;
Yamamoto, M .
INVERSE PROBLEMS, 2000, 16 (04) :L31-L38
[8]   Stability results for backward time-fractional parabolic equations [J].
Dinh Nho Hao ;
Liu, Jijun ;
Nguyen Van Duc ;
Nguyen Van Thang .
INVERSE PROBLEMS, 2019, 35 (12)
[9]  
Engel KJ., 2000, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics
[10]   Well-posedness for the backward problems in time for general time-fractional diffusion equation [J].
Floridia, Giuseppe ;
Li, Zhiyuan ;
Yamamoto, Masahiro .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (03) :593-610