Multielectrode electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering

被引:1
作者
Kwon, Gihan [1 ]
Kisslinger, Kim [2 ]
Hwang, Sooyeon [2 ]
Wright, Gwen [2 ]
Layne, Bobby [3 ]
Zhong, Hui [4 ]
Pattammattel, Ajith
Lynch, Joshua
Kim, Jungho [5 ]
Hu, Gongfang [6 ]
Brudvig, Gary W. [6 ]
Lee, Won-Il [1 ,7 ]
Nam, Chang-Yong [1 ,2 ,7 ]
机构
[1] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Chem Dept, Upton, NY 11973 USA
[4] SUNY Stony Brook, Joint Photon Sci Inst, Stony Brook, NY 11970 USA
[5] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA
[6] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[7] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11790 USA
关键词
multielectrode cells; pair distribution function; high-energy X-ray scattering; thin films; oxygen evolution catalysts; in situ studies; operando studies; electrochemistry; OXYGEN-EVOLUTION ELECTROCATALYSTS; WATER-OXIDATION; DOMAIN-STRUCTURE; EVOLVING CATALYST; DIFFRACTION; OXIDES; PERFORMANCE; PHOSPHATE;
D O I
10.1107/S1600576723006933
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A multielectrode-based electrochemical cell allows the structural characterization of an amorphous thin-film water oxidation catalyst under various electrochemical potentials using high-energy X-ray scattering and atomic pair distribution function (PDF) techniques. A multielectrode with five electrodes provides a sufficiently low background signal to enable high-energy X-ray scattering (HEXS) measurements and amplifies the extremely low HEXS signals from samples for high-resolution PDF analysis of in situ data from thin-film catalysts. Glassy carbon (GC) creates a relatively low intensity HEXS pattern and is used as a working electrode. Instead of a three-dimensional (3D) porous electrode architecture, the flat geometry of the electrode enables various deposition techniques to be used for the preparation of a highly conductive metal oxide layer. PDF analysis demonstrates high spatial resolution for a 230 nm thick amorphous iridium oxide film deposited on two roughened 60 mm thick GC electrodes. The PDF analysis resolves the domain size and distinguishes changes in fine structure which are directly correlated with the structure and function of the catalysts. The results bring the opportunity to analyze the structure of nanometre-scale amorphous thin-film catalysts in an electrolyte-compatible and compact 3D-printed electrochemical cell in a three-electrode configuration.
引用
收藏
页码:1392 / 1402
页数:11
相关论文
共 41 条
[1]   Molecular Chromophore-Catalyst Assemblies for Solar Fuel Applications [J].
Ashford, Dennis L. ;
Gish, Melissa K. ;
Vannucci, Aaron K. ;
Brennaman, M. Kyle ;
Templeton, Joseph L. ;
Papanikolas, John M. ;
Meyer, Thomas J. .
CHEMICAL REVIEWS, 2015, 115 (23) :13006-13049
[2]   In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research [J].
Bak, Seong-Min ;
Shadike, Zulipiya ;
Lin, Ruoqian ;
Yu, Xiqian ;
Yang, Xiao-Qing .
NPG ASIA MATERIALS, 2018, 10 :563-580
[3]   Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors [J].
Blakemore, James D. ;
Mara, Michael W. ;
Kushner-Lenhoff, Maxwell N. ;
Schley, Nathan D. ;
Konezny, Steven J. ;
Rivalta, Ivan ;
Negre, Christian F. A. ;
Snoeberger, Robert C. ;
Kokhan, Oleksandr ;
Huang, Jier ;
Stickrath, Andrew ;
Lan Anh Tran ;
Parr, Maria L. ;
Chen, Lin X. ;
Tiede, David M. ;
Batista, Victor S. ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
INORGANIC CHEMISTRY, 2013, 52 (04) :1860-1871
[4]   Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors [J].
Blakemore, James D. ;
Schley, Nathan D. ;
Kushner-Lenhoff, Maxwell N. ;
Winter, Andrew M. ;
D'Souza, Francis ;
Crabtree, Robert H. ;
Brudvig, Gary W. .
INORGANIC CHEMISTRY, 2012, 51 (14) :7749-7763
[5]   Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors [J].
Blakemore, James D. ;
Schley, Nathan D. ;
Olack, Gerard W. ;
Incarvito, Christopher D. ;
Brudvig, Gary W. ;
Crabtree, Robert H. .
CHEMICAL SCIENCE, 2011, 2 (01) :94-98
[6]  
Blakemore JD, 2010, J AM CHEM SOC, V132, P16017, DOI [10.1021/ja104775j, 10.1021/ja104775J]
[7]   In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts [J].
Brodsky, Casey N. ;
Hadt, Ryan G. ;
Hayes, Dugan ;
Reinhart, Benjamin J. ;
Li, Nancy ;
Chen, Lin X. ;
Nocera, Daniel G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (15) :3855-3860
[8]   Evolution of short-range order in chemically and physically grown thin film bilayer structures for electronic applications [J].
Dippel, Ann-Christin ;
Gutowski, Olof ;
Klemeyer, Lars ;
Boettger, Ulrich ;
Berg, Fenja ;
Schneller, Theodor ;
Hardtdegen, Alexander ;
Aussen, Stephan ;
Hoffmann-Eifert, Susanne ;
Zimmermann, Martin V. .
NANOSCALE, 2020, 12 (24) :13103-13112
[9]   Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis [J].
Du, Pingwu ;
Kokhan, Oleksandr ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Tiede, David M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (27) :11096-11099
[10]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313