Some Explicit Formulas of Hurwitz Lerch type Poly-Cauchy Polynomials and Poly-Bernoulli Polynomials

被引:0
作者
Lacpao, Noel B. [1 ]
机构
[1] Bukidnon State Univ, Dept Math, Coll Arts & Sci, Malaybalay City 8700, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 03期
关键词
Polylogarithm factorial functions; poly-Cauchy numbers of the first and second kind; poly-Bernoulli numbers; Hurwitz-Lerch factorial zeta function; generating function;
D O I
10.29020/nybg.ejpam.v16i3.4825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Hurwitz-Lerch poly-Cauchy and poly-Bernoulli polynomials are defined using polylogarithm factorial function. Some properties of these types of polynomials were also established. Specifically, two different forms of explicit formula of Hurwitz-Lerch type polyCauchy polynomials were obtained using Stirling numbers of the first and second kind and an explicit formula of Hurwitz-Lerch type poly-Bernoulli polynomials was established using the Stirling numbers of the first kind.
引用
收藏
页码:1747 / 1761
页数:15
相关论文
共 16 条
  • [1] Arakawa T., 1999, COMMENT MATH U ST PA, V48, P159
  • [2] POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
    Bayad, Abdelmejid
    Hamahata, Yoshinori
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) : 15 - 24
  • [3] New Classes of Degenerate Unified Polynomials
    Bedoya, Daniel
    Cesarano, Clemente
    Diaz, Stiven
    Ramirez, William
    [J]. AXIOMS, 2023, 12 (01)
  • [4] Generalizations of poly-Bernoulli and poly-Cauchy numbers
    Cenkci M.
    Young P.T.
    [J]. European Journal of Mathematics, 2015, 1 (4) : 799 - 828
  • [5] Cesarano C., 2023, Mathematics, V11
  • [6] Comtet L., 1974, ADV COMBINATORICS AR
  • [7] Corcino CB, 2019, J INEQUAL SPEC FUNCT, V10, P21
  • [8] Corcino R., 2015, Jour. Clas. Anal., V6, P119
  • [9] Corcino R., 2020, Applied Mathematical Analysis: Theory, Methods, and Applications, P679
  • [10] Jolany H, 2015, BOL SOC MAT MEX, V21, P149, DOI 10.1007/s40590-015-0061-y