Symmetric deformed 2D/3D Hurwitz-Kontsevich model and affine Yangian of gl(1)

被引:0
作者
Na, Wang [1 ]
Ke, Wu [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 07期
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1140/epjc/s10052-023-11765-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Since the (beta-deformed) Hurwitz Kontsevich model corresponds to the special case of affine Yangian of gl(1). In this paper, we construct two general cases of the beta-deformed Hurwitz Kontsevich model. We find that the W-operators of these two models can be represented by the generators e(kappa), f(kappa),psi(kappa) of the affine Yangian of gl(1), and the eigenstates (the symmetric functions Y lambda and 3-Jack polynomials) can be obtained from the 3D Young diagram representation of affine Yangian of gl(1). Then we can see that the W-operators and eigenstates are symmetric about the permutations of coordinate axes.
引用
收藏
页数:11
相关论文
共 23 条
[1]   BGWM as second constituent of complex matrix model [J].
Alexandrov, A. ;
Mironov, A. ;
Morozov, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (12)
[2]   Jack polynomials and affine Yangian [J].
Cui, Zhennan ;
Yang, Bai ;
Na, Wang ;
Ke, Wu .
NUCLEAR PHYSICS B, 2022, 984
[3]   Higher spins and Yangian symmetries [J].
Gaberdiel, Matthias R. ;
Gopakumar, Rajesh ;
Li, Wei ;
Peng, Cheng .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[4]   Transitive factorisations into transpositions and holomorphic mappings on the sphere [J].
Goulden, IP ;
Jackson, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (01) :51-60
[5]   Liouville reflection operator, affine Yangian and Bethe ansatz [J].
Litvinov, Alexey ;
Vilkoviskiy, Ilya .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
[6]  
Lukyanov S. L., 1990, Physics reviews: additional symmetries and exactly soluble models in two-dimensional conformal field theory
[7]  
Macdonald I.G., 1979, SYMMETRIC FUNCTIONS
[8]  
Maulik D, 2018, Arxiv, DOI arXiv:1211.1287
[9]   On the complete perturbative solution of one-matrix models [J].
Mironov, A. ;
Morozov, A. .
PHYSICS LETTERS B, 2017, 771 :503-507
[10]   Virasoro constraints for Kontsevich-Hurwitz partition function [J].
Mironov, A. ;
Morozov, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (02)