WEAKLY SUPERVISED VIDEO ANOMALY DETECTION BASED ON CROSS-BATCH CLUSTERING GUIDANCE

被引:3
|
作者
Cao, Congqi [1 ]
Zhang, Xin [1 ]
Zhang, Shizhou [1 ]
Wang, Peng [1 ]
Zhang, Yanning [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, ASGO Natl Engn Lab, Xian, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Anomaly detection; weakly supervised learning; cross-epoch learning;
D O I
10.1109/ICME55011.2023.00463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised video anomaly detection (WSVAD) is a challenging task since only video-level labels are available for training. In previous studies, the discriminative power of the learned features is not strong enough, and the data imbalance resulting from the mini-batch training strategy is ignored. To address these two issues, we propose a novel WSVAD method based on cross-batch clustering guidance. To enhance the discriminative power of features, we propose a batch clustering based loss to encourage a clustering branch to generate distinct normal and abnormal clusters based on a batch of data. Meanwhile, we design a cross-batch learning strategy by introducing clustering results from previous mini-batches to reduce the impact of data imbalance. In addition, we propose to generate more accurate segment-level anomaly scores based on batch clustering guidance to further improve the performance of WSVAD. Extensive experiments on two public datasets demonstrate the effectiveness of our approach.
引用
收藏
页码:2723 / 2728
页数:6
相关论文
共 50 条
  • [1] BatchNorm-Based Weakly Supervised Video Anomaly Detection
    Zhou, Yixuan
    Qu, Yi
    Xu, Xing
    Shen, Fumin
    Song, Jingkuan
    Tao Shen, Heng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13642 - 13654
  • [2] Attention-based framework for weakly supervised video anomaly detection
    Hualin Ma
    Liyan Zhang
    The Journal of Supercomputing, 2022, 78 : 8409 - 8429
  • [3] Attention-based framework for weakly supervised video anomaly detection
    Ma, Hualin
    Zhang, Liyan
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8409 - 8429
  • [4] Weakly supervised video anomaly detection with temporal attention module
    Song, Wonjoon
    Kim, Jonghyun
    Kim, Joongkyu
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 982 - 985
  • [5] Cross-Epoch Learning for Weakly Supervised Anomaly Detection in Surveillance Videos
    Yu, Shenghao
    Wang, Chong
    Mao, Qiaomei
    Li, Yuqi
    Wu, Jiafei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2137 - 2141
  • [6] Collaborative Normality Learning Framework for Weakly Supervised Video Anomaly Detection
    Liu, Yang
    Liu, Jing
    Zhao, Mengyang
    Li, Shuang
    Song, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2508 - 2512
  • [7] Diffusion-based normality pre-training for weakly supervised video anomaly detection
    Basak, Suvramalya
    Gautam, Anjali
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [8] ViCap-AD: video caption-based weakly supervised video anomaly detection
    Lim, Junwoo
    Lee, Juyeob
    Kim, Hyunji
    Park, Eunil
    MACHINE VISION AND APPLICATIONS, 2025, 36 (03)
  • [9] Weakly-Supervised Video Anomaly Detection with MTDA-Net
    Wu, Huixin
    Yang, Mengfan
    Wei, Fupeng
    Shi, Ge
    Jiang, Wei
    Qiao, Yaqiong
    Dong, Hangcheng
    ELECTRONICS, 2023, 12 (22)
  • [10] Weakly-Supervised Video Anomaly Detection With Snippet Anomalous Attention
    Fan, Yidan
    Yu, Yongxin
    Lu, Wenhuan
    Han, Yahong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5480 - 5492