Dynamical behavior analysis of an eighth-order Sharma's method

被引:12
作者
Wang, Xiaofeng [1 ]
Chen, Xiaohe [1 ]
Li, Wenshuo [1 ]
机构
[1] Bohai Univ, Sch Math Sci, Jinzhou 121000, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Iterative method; fractal; complex dynamics; stability; dynamical plane; basin of attraction; ITERATIVE METHODS; ORDER; FAMILY;
D O I
10.1142/S1793524523500687
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze the dynamical behavior of an eighth-order Sharma's iterative scheme, which contains a single parameter, with respect to an arbitrary quadratic polynomial using complex analysis. The eighth-order Sharma's iterative scheme is analytically conjugated to a rational operator on the Riemann sphere. We discuss the strange fixed points of the rational operator and present its stable region graph. Additionally, we briefly investigate the superattracting point and the critical point, which have an impact on the Sharma's iterative scheme discussed. Finally, we present the dynamical planes for different parameter values using the complex dynamics tool, which helps us select more effective members of the Sharma's iterative scheme. Numerical experiments are conducted to verify the theoretical results.
引用
收藏
页数:23
相关论文
共 19 条
[1]   Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane [J].
Alberto Magrenan, A. ;
Corder, Alicia ;
Gutierrez, Jose M. ;
Torregrosa, Juan R. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 105 :49-61
[2]   Different anomalies in a Jarratt family of iterative root-finding methods [J].
Alberto Magrenan, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 :29-38
[3]  
[Anonymous], 2002, Nonlinear Dynamics and Chaos
[4]   Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods [J].
Artidiello, Santiago ;
Chicharro, Francisco ;
Cordero, Alicia ;
Torregrosa, Juan R. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (10) :2049-2060
[5]   COMPLEX ANALYTIC DYNAMICS ON THE RIEMANN SPHERE [J].
BLANCHARD, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) :85-141
[6]  
Blanchard P., 1994, P S APPL MATH, V49, P139, DOI DOI 10.1090/PSAPM/049/1315536
[7]  
Carleson L., 1993, UNIVERSITEXT TRACTS
[8]   Complex dynamics of derivative-free methods for nonlinear equations [J].
Chicharro, Francisco ;
Cordero, Alicia ;
Gutierrez, Jose M. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :7023-7035
[9]   Drawing Dynamical and Parameters Planes of Iterative Families and Methods [J].
Chicharro, Francisco I. ;
Cordero, Alicia ;
Torregrosa, Juan R. .
SCIENTIFIC WORLD JOURNAL, 2013,
[10]   On optimal fourth-order iterative methods free from second derivative and their dynamics [J].
Chun, Changbum ;
Lee, Mi Young ;
Neta, Beny ;
Dzunic, Jovana .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) :6427-6438