Improvement of Quantitative STEM/EDXS Analyses for Chemical Analysis of Cu(In,Ga)Se2 Solar Cells with Zn(O,S) Buffer Layers

被引:2
|
作者
Jin, Xiaowei [1 ]
Schneider, Reinhard [1 ]
Mueller, Erich [1 ]
Falke, Meiken [2 ]
Terborg, Ralf [2 ]
Hariskos, Dimitrios [3 ]
Bauer, Andreas [3 ]
Witte, Wolfram [3 ]
Powalla, Michael [3 ]
Gerthsen, Dagmar [1 ]
机构
[1] Karlsruher Inst Technol KIT, Lab Elektronenmikroskopie, Engesserstr 7, D-76131 Karlsruhe, Germany
[2] Bruker Nano GmbH, Studio 2D, D-12489 Berlin, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden W, Meitnerstr 1, D-70563 Stuttgart, Germany
关键词
energy-dispersive X-ray spectroscopy; scanning transmission electron microscopy; Cu(In; Ga)Se-2; solar cell; Zn(O; S); thin films; ABSORPTION CORRECTION; ZETA-FACTOR; THIN; QUANTIFICATION; DEPOSITION; CU(IN;
D O I
10.1093/micmic/ozac031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy-dispersive X-ray spectroscopy (EDXS) in a transmission electron microscope is frequently used for the chemical analysis of Cu(In,Ga)Se-2 (CIGS) solar cells with high spatial resolution. However, the quantification of EDXS data is complicated due to quantification errors and artifacts. This work shows how quantitative EDXS analyses of CIGS-based solar cells with Zn(O,S) buffer and ZnO-based window layers can be significantly improved. For this purpose, CIGS-based solar cells and a reference sample with a stack of Zn(O,S) layers with different [O]/[S] ratios were analyzed. For Zn(O,S), the correction of sample-thickness-dependent absorption of low-energy O-K-& alpha; X-rays significantly improves the results of quantitative EDXS. Absorption of characteristic X-rays in CIGS is less relevant. However, for small transmission electron microscopy (TEM) sample thicknesses, artifacts can occur due to material changes by focused-ion-beam (FIB)-based preparation of TEM samples, electron-beam-induced damage, and oxidation of the sample surface. We also show that a Pt-protection layer, deposited on the sample surface before FIB preparation of TEM lamellae, can induce artifacts that can be avoided by first depositing a carbon layer.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [41] Impact of annealing on Cu(In,Ga)Se2 solar cells with Zn(O, S)/( Zn, Mg) O buffers
    Witte, Wolfram
    Hariskos, Dimitrios
    Eicke, Axel
    Menner, Richard
    Kiowski, Oliver
    Powalla, Michael
    THIN SOLID FILMS, 2013, 535 : 180 - 183
  • [42] Cu(In,Ga)Se2 thin-film solar cells with ZnS(O,OH), Zn-Cd-S(O,OH), and CdS buffer layers
    Bhattacharya, RN
    Ramanathan, K
    Gedvilas, L
    Keyes, B
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (11) : 1862 - 1864
  • [43] IZO or IOH Window Layers Combined with Zn(O,S) and CdS Buffers for Cu(In,Ga)Se2 Solar Cells
    Witte, Wolfram
    Carron, Romain
    Hariskos, Dimitrios
    Fu, Fan
    Menner, Richard
    Buecheler, Stephan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (12):
  • [44] Deuterium Markers in CdS and Zn(O,S) Buffer Layers Deposited by Solution Growth for Cu(In,Ga)Se2 Thin-Film Solar Cells
    Witte, Wolfram
    De Souza, Roger A.
    Martin, Manfred
    Eicke, Axel
    Hariskos, Dimitrios
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (12):
  • [45] Growth of Ultrathin Zn Compound Buffer Layer by a Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells
    Larina, Liudmila
    Shin, Dong Hyeop
    Tsvetkov, Nikolay
    Ahn, Byung Tae
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (11) : D469 - D473
  • [46] Buffer-less Cu(In,Ga)Se2 solar cells with Zn(O,S):Al transparent conductive oxide film
    Julayhi, Jasmeen
    Minemoto, Takashi
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 7-8, 2013, 10 (7-8): : 1026 - 1030
  • [47] Chemical and structural characterization of Cu(In, Ga)Se2/Mo interface in Cu(In, Ga)Se2 solar cells
    Matsushita Electric Industry Co, Ltd, Kyoto, Japan
    Jpn J Appl Phys Part 2 Letter, 10 A (L1253-L1256):
  • [48] Properties and applications of ZnS buffer layers for Cu(In, Ga)Se2 thin film solar cells
    Department of Mechanical Engineering, Anhui University of Technology and Science, Wuhu 241000, China
    不详
    Pan Tao Ti Hsueh Pao, 2007, 5 (726-730): : 726 - 730
  • [49] Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers
    Minemoto, T
    Hashimoto, Y
    Satoh, T
    Negami, T
    Takakura, H
    Hamakawa, Y
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) : 8327 - 8330
  • [50] Electrodeposition of In-S based buffer layers for high efficiency Cu(In, Ga)Se2 based solar cells
    Chassaing, E.
    Naghavi, N.
    Gallanti, S.
    Renou, G.
    Soro, M.
    Bouttemy, M.
    Etcheberry, A.
    Lincot, D.
    PHOTOVOLTAICS FOR THE 21ST CENTURY 8, 2013, 50 (51): : 93 - 100