Improvement of Quantitative STEM/EDXS Analyses for Chemical Analysis of Cu(In,Ga)Se2 Solar Cells with Zn(O,S) Buffer Layers

被引:2
|
作者
Jin, Xiaowei [1 ]
Schneider, Reinhard [1 ]
Mueller, Erich [1 ]
Falke, Meiken [2 ]
Terborg, Ralf [2 ]
Hariskos, Dimitrios [3 ]
Bauer, Andreas [3 ]
Witte, Wolfram [3 ]
Powalla, Michael [3 ]
Gerthsen, Dagmar [1 ]
机构
[1] Karlsruher Inst Technol KIT, Lab Elektronenmikroskopie, Engesserstr 7, D-76131 Karlsruhe, Germany
[2] Bruker Nano GmbH, Studio 2D, D-12489 Berlin, Germany
[3] Zentrum Sonnenenergie & Wasserstoff Forsch Baden W, Meitnerstr 1, D-70563 Stuttgart, Germany
关键词
energy-dispersive X-ray spectroscopy; scanning transmission electron microscopy; Cu(In; Ga)Se-2; solar cell; Zn(O; S); thin films; ABSORPTION CORRECTION; ZETA-FACTOR; THIN; QUANTIFICATION; DEPOSITION; CU(IN;
D O I
10.1093/micmic/ozac031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Energy-dispersive X-ray spectroscopy (EDXS) in a transmission electron microscope is frequently used for the chemical analysis of Cu(In,Ga)Se-2 (CIGS) solar cells with high spatial resolution. However, the quantification of EDXS data is complicated due to quantification errors and artifacts. This work shows how quantitative EDXS analyses of CIGS-based solar cells with Zn(O,S) buffer and ZnO-based window layers can be significantly improved. For this purpose, CIGS-based solar cells and a reference sample with a stack of Zn(O,S) layers with different [O]/[S] ratios were analyzed. For Zn(O,S), the correction of sample-thickness-dependent absorption of low-energy O-K-& alpha; X-rays significantly improves the results of quantitative EDXS. Absorption of characteristic X-rays in CIGS is less relevant. However, for small transmission electron microscopy (TEM) sample thicknesses, artifacts can occur due to material changes by focused-ion-beam (FIB)-based preparation of TEM samples, electron-beam-induced damage, and oxidation of the sample surface. We also show that a Pt-protection layer, deposited on the sample surface before FIB preparation of TEM lamellae, can induce artifacts that can be avoided by first depositing a carbon layer.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [31] New Route for Fabrication of High-Quality Zn(S,O) Buffer Layer at High Deposition Temperature on Cu(In,Ga)Se2 Solar Cells
    Zhu, Jiakuan
    Lau, Tsz-Ki
    Yang, Shihang
    Mai, Jiangquan
    Lai, Yu-Ling
    Hsu, Yao-Jane
    Luo, Hailin
    Lu, Xinhui
    Xiao, Xudong
    IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (02): : 651 - 655
  • [32] Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells
    Carron, Romain
    Avancini, Enrico
    Feurer, Thomas
    Bissig, Benjamin
    Losio, Paolo A.
    Figi, Renato
    Schreiner, Claudia
    Burki, Melanie
    Bourgeois, Emilie
    Remes, Zdenek
    Nesladek, Milos
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) : 396 - 410
  • [33] Growth kinetics, properties, performance, and stability of atomic layer deposition Zn-Sn-O buffer layers for Cu(In,Ga)Se2 solar cells
    Hultqvist, Adam
    Platzer-Bjorkman, Charlotte
    Zimmermann, Uwe
    Edoff, Marika
    Torndahl, Tobias
    PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07): : 883 - 891
  • [34] Superstrate-Type Cu(In,Ga)Se2 thin film solar cells with ZnO buffer layers
    Nakada, T
    Kume, T
    Mise, T
    Kunioka, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (5A): : L499 - L501
  • [35] Effects of Ammonia-Induced Surface Modification of Cu(In,Ga)Se2 on High-Efficiency Zn(O,S)-Based Cu(In,Ga)Se2 Solar Cells
    Li, Jianmin
    Ma, Yaping
    Chen, Guilin
    Gong, Junbo
    Wang, Xiaomin
    Kong, Yifan
    Ma, Xuhang
    Wang, Kedong
    Li, Weimin
    Yang, Chunlei
    Xiao, Xudong
    SOLAR RRL, 2019, 3 (02)
  • [36] Cu(In,Ga)Se2 Solar Cells With Amorphous Oxide Semiconducting Buffer Layers
    Koida, Takashi
    Kamikawa-Shimizu, Yukiko
    Yamada, Akimasa
    Shibata, Hajime
    Niki, Shigeru
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (03): : 956 - 961
  • [37] Reactively sputtered Zn(O,S) buffer layers for controlling band alignment of Cu(In,Ga)Se2 thin-film solar cell interface
    Cho, Dae-Hyung
    Lee, Woo-Jung
    Kim, Myeong Eon
    Kim, Kihwan
    Yun, Jae Ho
    Chung, Yong-Duck
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [38] Chemical and Electronic Structure at the Interface between a Sputter-Deposited Zn(O,S) Buffer and a Cu(In,Ga)(S,Se)2 Solar Cell Absorber
    Hauschild, Dirk
    Blankenship, Mary
    Hua, Amandee
    Steininger, Ralph
    Eraerds, Patrick
    Niesen, Thomas
    Dalibor, Thomas
    Yang, Wanli
    Heske, Clemens
    Weinhardt, Lothar
    SOLAR RRL, 2023, 7 (11)
  • [39] Simulation and performance analysis of superstrate Cu(In, Ga)Se2 solar cells using nanostructured Zn1-xVxO thin films
    Djessas, Kamal
    Bouchama, Idris
    Medjnoun, Kahina
    Bouloufa, Abdesselam
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2014, 11 (9-11) : 854 - 868
  • [40] Heterointerface recombination of Cu(In,Ga)(S,Se)2-based solar cells with different buffer layers
    Chantana, Jakapan
    Kato, Takuya
    Sugimoto, Hiroki
    Minemoto, Takashi
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (02): : 127 - 134