Environmental vulnerability evolution in the Brazilian Amazon

被引:1
作者
Fiedler, Nilton C. [1 ]
De Jesus, Ricardo M. M. [1 ]
Moreira, Felipe Z. [1 ]
Ramalho, Antonio H. C. [2 ]
Dos Santos, Alexandre R. [3 ]
De Souza, Kaise B. [1 ]
机构
[1] Univ Fed Espirito Santo UFES, Dept Ciencias Florestais & Madeira, Ave Governador Lindemberg 316, BR-29550000 Jeronimo Monteiro, ES, Brazil
[2] Univ Fed Sul & Sudeste Para UNIFESSPA, Inst Estudos Xingu, Fac Ciencias Agr, Loteamento Cidade Nova,Lote 1,Quadra 15,Setor 15,A, BR-68380000 Sao Felix Do Xingu, PA, Brazil
[3] Univ Fed Espirito Santo UFES, Dept Engn Rural, Alto Univ S-N, BR-29500000 Alegre, ES, Brazil
来源
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS | 2023年 / 95卷 / 02期
关键词
Geographic Information Systems; artificial intelligence techniques; anthropism; environmental evolution; MODIS; LAND-USE; DEFORESTATION; FRONTIER; AREA;
D O I
10.1590/0001-3765202320210333
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Decision making and environmental policies are mainly based on propensity level to impact in the area. The propensity level can be determined through artificial intelligence techniques included in geotechnological universe. Thus, this study aimed to determine the areas of greatest vulnerability to human activities, in Amazon biome, through MODIS images of Land use and land cover (LULC) from the 2001 and 2013. Remote sensing, Euclidean distance, Fuzzy logic, AHP method and analysis of net variations were applied to specialize the classes of vulnerability in the states belonging to the Amazon Biome. From the results, it can be seen that the class that most evolved in a positive net gain during the evaluated period was "very high" and the one that most reduced was "high", showing that there was a transition from "high" to "very high" risk areas. The states with the largest areas under "very high" risk class were Mato Grosso (101,100.10 km2) and Para (81,010.30 km2). It is concluded that the application of remote sensing techniques allows the determination and assessment of the environmental vulnerability evolution. Mitigation measures urgently need to be implemented in the Amazon biome. The methodology can be extended to any other area of the planet.
引用
收藏
页数:20
相关论文
共 53 条
  • [1] Koppen's climate classification map for Brazil
    Alvares, Clayton Alcarde
    Stape, Jose Luiz
    Sentelhas, Paulo Cesar
    de Moraes Goncalves, Jose Leonardo
    Sparovek, Gerd
    [J]. METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) : 711 - 728
  • [2] Alves Humberto Prates da Fonseca, 2006, Rev. bras. estud. popul., V23, P43, DOI 10.1590/S0102-30982006000100004
  • [3] AMAZONAS-GOVERNO DO ESTADO, 2009, SECRETARIA ESTADO ME, V18, P1
  • [4] Zoning eco-environmental vulnerability for environmental management and protection
    Anh Kim Nguyen
    Liou, Yuei-An
    Li, Ming-Hsu
    Tuan Anh Tran
    [J]. ECOLOGICAL INDICATORS, 2016, 69 : 100 - 117
  • [5] Anjos Viviane Silveira, 2013, Soc. nat., V25, P205, DOI 10.1590/S1982-45132013000100016
  • [6] Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome
    Batista, Estela M. C. C.
    Shultz, Juliana
    Matos, Tassya T. S.
    Fornari, Mayara R.
    Ferreira, Thuany M.
    Szpoganicz, Bruno
    de Freitas, Rilton A.
    Mangrich, Antonio S.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] Castro E, 2005, NOVOS CAD NAEA, V8, P5
  • [8] CAVALCANTE MMA, 2012, CONFINS, V23, P1, DOI [10.4000/confins.7758, DOI 10.4000/CONFINS.7758]
  • [9] Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucurui hydroelectric dam in the Amazon basin
    Chen, Gang
    Powers, Ryan P.
    de Carvalho, Luis M. T.
    Mora, Brice
    [J]. APPLIED GEOGRAPHY, 2015, 63 : 1 - 8
  • [10] Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir
    Colak, Emre
    Sunar, Filiz
    [J]. INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2020, 45