Revisiting type-2 triangular norms on normal convex fuzzy truth values

被引:2
作者
Wu, Xinxing [1 ,2 ]
Zhu, Zhiyi [3 ]
Chen, Guanrong [4 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Zhuhai Coll Sci & Technol, Zhuhai 519041, Guangdong, Peoples R China
[3] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy truth values; Triangular norm (t-norm); T-NORMS; ALGEBRA; AUTOMORPHISMS; AGGREGATION; NULLNORMS; UNINORMS; SETS;
D O I
10.1016/j.ins.2023.119246
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies t-norms on the space L of all normal and convex fuzzy truth values. We first prove that the only non-convolution form type-2 t-norm constructed by Wu et al. satisfies the distributivity law for meet-convolution and show that t-norm in the sense of Walker and Walker is strictly stronger than t ������-norm on L , which is strictly stronger than t-norm on L. Furthermore, we characterize some restrictive axioms of t ������-norms for convolution operations on L and obtain some necessary conditions for t ������-(co)norm convolution operations on L.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 2002, MULT VALUED LOG
[2]   A characterization for some type-2 fuzzy strong negations [J].
Cubillo, S. ;
Torres-Blanc, C. ;
Hernandez-Varela, P. .
KNOWLEDGE-BASED SYSTEMS, 2020, 191
[3]   Convolution lattices [J].
De Miguel, L. ;
Bustince, H. ;
De Baets, B. .
FUZZY SETS AND SYSTEMS, 2018, 335 :67-93
[4]   Necessary and sufficient conditions for fuzzy truth values to form a de Morgan algebra [J].
Emoto, M ;
Mukaidono, M .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1999, 7 (04) :309-316
[5]  
Harding J., 2016, The Truth Value Algebra of Type-2 Fuzzy Sets: Order Convolutions of Functions on the Unit Interval
[6]   Lattices of convex normal functions [J].
Harding, John ;
Walker, Carol ;
Walker, Elbert .
FUZZY SETS AND SYSTEMS, 2008, 159 (09) :1061-1071
[7]   Partial Orders on Fuzzy Truth Value Algebras [J].
Harding, John ;
Walker, Carol ;
Walker, Elbert .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2015, 23 (02) :193-219
[8]   Convex normal functions revisited [J].
Harding, John ;
Walker, Carol ;
Walker, Elbert .
FUZZY SETS AND SYSTEMS, 2010, 161 (09) :1343-1349
[9]   On T-Norms for Type-2 Fuzzy Sets [J].
Hernandez, Pablo ;
Cubillo, Susana ;
Torres-Blanc, Carmen .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (04) :1155-1163
[10]  
Klement E.P., 2000, Triangular norms, V1st