Developing an Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagnosis of Acute Respiratory Distress Syndrome

被引:2
作者
Barakat, Chadi S. [1 ,2 ,3 ]
Sharafutdinov, Konstantin [3 ,4 ]
Busch, Josefine [1 ]
Saffaran, Sina [5 ]
Bates, Declan G. [5 ]
Hardman, Jonathan G. [6 ]
Schuppert, Andreas [3 ,4 ]
Brynjolfsson, Sigurdur [2 ]
Fritsch, Sebastian [1 ,3 ,7 ]
Riedel, Morris [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52428 Julich, Germany
[2] Univ Iceland, Sch Engn & Nat Sci, IS-107 Reykjavik, Iceland
[3] SMITH Consortium German Med Informat Initiat, D-07747 Leipzig, Germany
[4] Univ Hosp RWTH Aachen, Joint Res Ctr Computat Biomed, D-52074 Aachen, Germany
[5] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[6] Univ Nottingham, Sch Med, Nottingham NG7 2RD, England
[7] Univ Hosp RWTH Aachen, Dept Intens Care Med, D-52074 Aachen, Germany
基金
欧盟地平线“2020”;
关键词
high-performance computing; machine learning; ICU; ARDS; surrogate model; virtual patient; PHYSIOLOGY SIMULATOR; VALIDATION; CARE;
D O I
10.3390/diagnostics13122098
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of many Intensive Care Unit patients through gradual reduction of lung function. Due to its heterogeneity, this condition has been difficult to diagnose and treat, although it has been the subject of continuous research, leading to the development of several tools for modeling disease progression on the one hand, and guidelines for diagnosis on the other, mainly the "Berlin Definition". This paper describes the development of a deep learning-based surrogate model of one such tool for modeling ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development process takes advantage of current machine learning and data-analysis techniques, as well as efficient hyperparameter-tuning methods, within a high-performance computing-enabled data science platform. The lightweight models developed through this process present comparable accuracy to the original simulator (per-parameter R-2 > 0.90). The experimental process described herein serves as a proof of concept for the rapid development and dissemination of specialised diagnosis support systems based on pre-existing generalised mechanistic models, making use of supercomputing infrastructure for the development and testing processes and supported by open-source software for streamlined implementation in clinical routines.
引用
收藏
页数:16
相关论文
共 50 条
[1]   A Comprehensive Review of the Management of Acute Respiratory Distress Syndrome [J].
Ajibowo, Abimbola O. ;
Kolawole, Olasunkanmi A. ;
Sadia, Haleema ;
Amedu, Oyovwike S. ;
Chaudhry, Hassan A. ;
Hussaini, Helai ;
Hambolu, Eloho ;
Khan, Tuba ;
Kauser, Humaira ;
Khan, Aadil .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (10)
[2]   Early Identification and Diagnostic Approach in Acute Respiratory Distress Syndrome (ARDS) [J].
Arrive, Francois ;
Coudroy, Remi ;
Thille, Arnaud W. .
DIAGNOSTICS, 2021, 11 (12)
[3]  
ASHBAUGH DG, 1967, LANCET, V2, P319
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]  
Barakat C., 2022, 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO)., P368, DOI 10.23919/MIPRO55190.2022.9803320
[6]  
Barakat C., 2021, P 2021 44 INT CONVEN, P311, DOI [10.23919/MIPRO52101.2021.9596840, DOI 10.23919/MIPRO52101.2021.9596840]
[7]   Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support [J].
Barakat, Chadi ;
Aach, Marcel ;
Schuppert, Andreas ;
Brynjolfsson, Sigurour ;
Fritsch, Sebastian ;
Riedel, Morris .
DIAGNOSTICS, 2023, 13 (03)
[8]   Missed or delayed diagnosis of ARDS: a common and serious problem [J].
Bellani, Giacomo ;
Pham, Tai ;
Laffey, John G. .
INTENSIVE CARE MEDICINE, 2020, 46 (06) :1180-1183
[9]   Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries [J].
Bellani, Giacomo ;
Laffey, John G. ;
Pham, Tai ;
Fan, Eddy ;
Brochard, Laurent ;
Esteban, Andres ;
Gattinoni, Luciano ;
van Haren, Frank ;
Larsson, Anders ;
McAuley, Daniel F. ;
Ranieri, Marco ;
Rubenfeld, Gordon ;
Thompson, B. Taylor ;
Wrigge, Hermann ;
Slutsky, Arthur S. ;
Pesenti, Antonio .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (08) :788-800
[10]   Acute respiratory distress syndrome [J].
Confalonieri, Marco ;
Salton, Francesco ;
Fabiano, Francesco .
EUROPEAN RESPIRATORY REVIEW, 2017, 26 (144)