Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction

被引:149
作者
Jin, Hui [1 ]
Xu, Zhewei [1 ]
Hu, Zhi-Yi [1 ]
Yin, Zhiwen [1 ]
Wang, Zhao [1 ]
Deng, Zhao [1 ]
Wei, Ping [1 ]
Feng, Shihao [1 ]
Dong, Shunhong [1 ]
Liu, Jinfeng [1 ]
Luo, Sicheng [1 ]
Qiu, Zhaodong [1 ]
Zhou, Liang [1 ]
Mai, Liqiang [1 ]
Su, Bao-Lian [1 ,2 ]
Zhao, Dongyuan [3 ]
Liu, Yong [1 ]
机构
[1] Wuhan Univ Technol, Int Sch Mat Sci & Engn ISMSE, Nanostruct Res Ctr, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Univ Namur, Dept Chem, Lab Inorgan Mat Chem, 61 Rue Bruxelles, B-5000 Namur, Belgium
[3] Fudan Univ, Dept Chem, Lab Adv Mat, State Key Lab Mol Engn Polymers,Shanghai Key Lab M, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SOLVOTHERMAL SYNTHESIS; NANOPARTICLES; NANOFRAMES; NANOCAGES;
D O I
10.1038/s41467-023-37268-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The design of Pt-based nanoarchitectures with controllable compositions and morphologies is necessary to enhance their electrocatalytic activity. Herein, we report a rational design and synthesis of anisotropic mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowires for high-efficient electrocatalysis. The catalyst has a uniform core-shell structure with an ultrathin atomic-jagged Pt nanowire core and a mesoporous Pt-skin Pt3Ni framework shell, possessing high electrocatalytic activity, stability and Pt utilisation efficiency. For the oxygen reduction reaction, the anisotropic mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowires demonstrated exceptional mass and specific activities of 6.69 A/mg(pt) and 8.42 mA/cm(2) (at 0.9 V versus reversible hydrogen electrode), and the catalyst exhibited high stability with negligible activity decay after 50,000 cycles. The mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire configuration combines the advantages of three-dimensional open mesopore molecular accessibility and compressive Pt-skin surface strains, which results in more catalytically active sites and weakened chemisorption of oxygenated species, thus boosting its catalytic activity and stability towards electrocatalysis.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its d-Band Center via Transition Metal Oxide Support Interactions [J].
Ando, Fuma ;
Gunji, Takao ;
Tanabe, Toyokazu ;
Fukano, Isao ;
Abruna, Hector D. ;
Wu, Jianfei ;
Ohsaka, Takeo ;
Matsumoto, Futoshi .
ACS CATALYSIS, 2021, 11 (15) :9317-9332
[2]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[3]   Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis [J].
Bu, Lingzheng ;
Guo, Shaojun ;
Zhang, Xu ;
Shen, Xuan ;
Su, Dong ;
Lu, Gang ;
Zhu, Xing ;
Yao, Jianlin ;
Guo, Jun ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2016, 7
[4]   Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis [J].
Carpenter, Michael K. ;
Moylan, Thomas E. ;
Kukreja, Ratandeep Singh ;
Atwan, Mohammed H. ;
Tessema, Misle M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8535-8542
[5]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[6]   Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction [J].
Dai, Sheng ;
Chou, Jyh-Pin ;
Wang, Kuan-Wen ;
Hsu, Yang-Yang ;
Hu, Alice ;
Pan, Xiaoqing ;
Chen, Tsan-Yao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Dynamic interplay between metal nanoparticles and oxide support under redox conditions [J].
Frey, H. ;
Beck, A. ;
Huang, X. ;
van Bokhoven, J. A. ;
Willinger, M. G. .
SCIENCE, 2022, 376 (6596) :982-+
[8]   Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction [J].
Gong, Mingxing ;
Xiao, Dongdong ;
Deng, Zhiping ;
Zhang, Rui ;
Xia, Weiwei ;
Zhao, Tonghui ;
Liu, Xupo ;
Shen, Tao ;
Hu, Yezhou ;
Lu, Yun ;
Zhao, Xu ;
Xin, Huolin ;
Wang, Deli .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 282
[9]   One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst [J].
Gong, Mingxing ;
Deng, Zhiping ;
Xiao, Dongdong ;
Han, Lili ;
Zhao, Tonghui ;
Lu, Yun ;
Shen, Tao ;
Liu, Xupo ;
Lin, Ruoqian ;
Huang, Ting ;
Zhou, Guangwen ;
Xin, Huolin ;
Wang, Deli .
ACS CATALYSIS, 2019, 9 (05) :4488-+
[10]   In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications [J].
Iqbal, Muhammad ;
Bando, Yoshio ;
Sun, Ziqi ;
Wu, Kevin C. -W. ;
Rowan, Alan E. ;
Na, Jongbeom ;
Guan, Bu Yuan ;
Yamauchi, Yusuke .
ADVANCED MATERIALS, 2021, 33 (13)