Clinical application of AI-based PET images in oncological patients

被引:17
作者
Dai, Jiaona [1 ]
Wang, Hui [1 ]
Xu, Yuchao [2 ]
Chen, Xiyang [3 ]
Tian, Rong [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Nucl Med, Chengdu 610041, Peoples R China
[2] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Gen Surg, Div Vasc Surg, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Radiomics; Positron emission tomography; Neoplasms; Tumor management; POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; METABOLIC TUMOR VOLUME; RADIOMICS ANALYSIS; MULTIPARAMETRIC PET/MRI; ARTIFICIAL-INTELLIGENCE; HISTOLOGICAL SUBTYPE; IMAGING FEATURES; PROSTATE-CANCER; FDG PET/CT;
D O I
10.1016/j.semcancer.2023.03.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra-and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
引用
收藏
页码:124 / 142
页数:19
相关论文
共 254 条
  • [1] Comparison of the volumetric and radiomics findings of 18F-FDG PET/CT images with immunohistochemical prognostic factors in local/locally advanced breast cancer
    Acar, Emine
    Turgut, Bulent
    Yigit, Seyran
    Kaya, GamzeCapa
    [J]. NUCLEAR MEDICINE COMMUNICATIONS, 2019, 40 (07) : 764 - 772
  • [2] Ahmad J., 2019, Deep_learning:_convergence_to_big_data_analytics, P31, DOI DOI 10.1007/978-981-13-3459-7_3
  • [3] Esophageal and Esophagogastric Junction Cancers, Version 2.2019
    Ajani, Jaffer A.
    D'Amico, Thomas A.
    Bentrem, David J.
    Chao, Joseph
    Corvera, Carlos
    Das, Prajnan
    Denlinger, Crystal S.
    Enzinger, Peter C.
    Fanta, Paul
    Farjah, Farhood
    Gerdes, Hans
    Gibson, Michael
    Glasgow, Robert E.
    Hayman, James A.
    Hochwald, Steven
    Hofstetter, Wayne L.
    Ilson, David H.
    Jaroszewski, Dawn
    Johung, Kimberly L.
    Keswani, Rajesh N.
    Kleinberg, Lawrence R.
    Leong, Stephen
    Ly, Quan P.
    Matkowskyj, Kristina A.
    McNamara, Michael
    Mulcahy, Mary F.
    Paluri, Ravi K.
    Park, Haeseong
    Perry, Kyle A.
    Pimiento, Jose
    Poultsides, George A.
    Roses, Robert
    Strong, Vivian E.
    Wiesner, Georgia
    Willett, Christopher G.
    Wright, Cameron D.
    McMillian, Nicole R.
    Pluchino, Lenora A.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2019, 17 (07): : 855 - 883
  • [4] Dual time point imaging of staging PSMA PET/CT quantification; spread and radiomic analyses
    Aksu, Aysegul
    Topuz, Ozge Vural
    Yilmaz, Gulsah
    Kaya, Gamze Capa
    Yilmaz, Burcak
    [J]. ANNALS OF NUCLEAR MEDICINE, 2022, 36 (03) : 310 - 318
  • [5] Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients
    Alongi, Pierpaolo
    Stefano, Alessandro
    Comelli, Albert
    Laudicella, Riccardo
    Scalisi, Salvatore
    Arnone, Giuseppe
    Barone, Stefano
    Spada, Massimiliano
    Purpura, Pierpaolo
    Bartolotta, Tommaso Vincenzo
    Midiri, Massimo
    Lagalla, Roberto
    Russo, Giorgio
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (07) : 4595 - 4605
  • [6] PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome
    Alsaab, Hashem O.
    Sau, Samaresh
    Alzhrani, Rami
    Tatiparti, Katyayani
    Bhise, Ketki
    Kashaw, Sushil K.
    Iyer, Arun K.
    [J]. FRONTIERS IN PHARMACOLOGY, 2017, 8
  • [7] Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma
    Amini, Mehdi
    Nazari, Mostafa
    Shiri, Isaac
    Hajianfar, Ghasem
    Deevband, Mohammad Reza
    Abdollahi, Hamid
    Arabi, Hossein
    Rahmim, Arman
    Zaidi, Habib
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (20)
  • [8] Anan N, 2022, INSIGHTS IMAGING, V13, DOI 10.1186/s13244-021-01153-9
  • [9] Auspicious machine learning
    不详
    [J]. NATURE BIOMEDICAL ENGINEERING, 2017, 1 (02):
  • [10] Radiomics Biomarkers Correlate with CD8 Expression and Predict Immune Signatures in Melanoma Patients
    Aoude, Lauren G.
    Wong, Bernadette Z. Y.
    Bonazzi, Vanessa F.
    Brosda, Sandra
    Walters, Shaun B.
    Koufariotis, Lambros T.
    Naeini, Marjan M.
    Pearson, John, V
    Oey, Harald
    Patel, Kalpana
    Bradford, Julia J.
    Bloxham, Conor J.
    Atkinson, Victoria
    Law, Phillip
    Strutton, Geoffrey
    Bayley, Gerard
    Yang, Samuel
    Smithers, B. Mark
    Waddell, Nicola
    Miles, Kenneth
    Barbour, Andrew P.
    [J]. MOLECULAR CANCER RESEARCH, 2021, 19 (06) : 950 - 956