scDrug: From single-cell RNA-seq to drug response prediction

被引:17
作者
Hsieh, Chiao-Yu [1 ]
Wen, Jian-Hung [1 ,2 ]
Lin, Shih-Ming [1 ,3 ,4 ]
Tseng, Tzu-Yang [3 ,5 ]
Huang, Jia-Hsin [1 ]
Huang, Hsuan-Cheng [2 ]
Juan, Hsueh-Fen [1 ,3 ,5 ,6 ]
机构
[1] Taiwan AI Labs, Taipei 10351, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Biomed Informat, Taipei 11221, Taiwan
[3] Natl Taiwan Univ, Dept Life Sci, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei 10617, Taiwan
[6] Natl Taiwan Univ, Ctr Computat & Syst Biol, Taipei 10617, Taiwan
关键词
Single -cell RNA-seq; Drug repositioning; Bioinformatics; Tumor cell subpopulations; ENRICHMENT ANALYSIS; EXPRESSION;
D O I
10.1016/j.csbj.2022.11.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) technology allows massively parallel characterization of thou-sands of cells at the transcriptome level. scRNA-seq is emerging as an important tool to investigate the cellular components and their interactions in the tumor microenvironment. scRNA-seq is also used to reveal the association between tumor microenvironmental patterns and clinical outcomes and to dissect cell-specific effects of drug treatment in complex tissues. Recent advances in scRNA-seq have driven the discovery of biomarkers in diseases and therapeutic targets. Although methods for prediction of drug response using gene expression of scRNA-seq data have been proposed, an integrated tool from scRNA-seq analysis to drug discovery is required. We present scDrug as a bioinformatics workflow that includes a one-step pipeline to generate cell clustering for scRNA-seq data and two methods to predict drug treatments. The scDrug pipeline consists of three main modules: scRNA-seq analysis for identifica-tion of tumor cell subpopulations, functional annotation of cellular subclusters, and prediction of drug responses. scDrug enables the exploration of scRNA-seq data readily and facilitates the drug repurposing process. scDrug is freely available on GitHub at https://github.com/ailabstw/scDrug.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:150 / 157
页数:8
相关论文
共 37 条
[1]   Data Descriptor: FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies [J].
Abugessaisa, Imad ;
Noguchi, Shuhei ;
Hasegawa, Akira ;
Harshbarger, Jayson ;
Kondo, Atsushi ;
Lizio, Marina ;
Severin, Jessica ;
Carninci, Piero ;
Kawaji, Hideya ;
Kasukawa, Takeya .
SCIENTIFIC DATA, 2017, 4
[2]   Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer [J].
Aissa, Alexandre F. ;
Islam, Abul B. M. M. K. ;
Ariss, Majd M. ;
Go, Cammille C. ;
Rader, Alexandra E. ;
Conrardy, Ryan D. ;
Gajda, Alexa M. ;
Rubio-Perez, Carlota ;
Valyi-Nagy, Klara ;
Pasquinelli, Mary ;
Feldman, Lawrence E. ;
Green, Stefan J. ;
Lopez-Bigas, Nuria ;
Frolov, Maxim, V ;
Benevolenskaya, Elizaveta, V .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Malani, Disha ;
Murumagi, Astrid ;
Kallioniemi, Olli ;
Aittokallio, Tero ;
Kaski, Samuel .
BIOINFORMATICS, 2016, 32 (17) :455-463
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[6]   Pan-cancer analysis of whole genomes [J].
Campbell, Peter J. ;
Getz, Gad ;
Korbel, Jan O. ;
Stuart, Joshua M. ;
Jennings, Jennifer L. ;
Stein, Lincoln D. ;
Perry, Marc D. ;
Nahal-Bose, Hardeep K. ;
Ouellette, B. F. Francis ;
Li, Constance H. ;
Rheinbay, Esther ;
Nielsen, G. Petur ;
Sgroi, Dennis C. ;
Wu, Chin-Lee ;
Faquin, William C. ;
Deshpande, Vikram ;
Boutros, Paul C. ;
Lazar, Alexander J. ;
Hoadley, Katherine A. ;
Louis, David N. ;
Dursi, L. Jonathan ;
Yung, Christina K. ;
Bailey, Matthew H. ;
Saksena, Gordon ;
Raine, Keiran M. ;
Buchhalter, Ivo ;
Kleinheinz, Kortine ;
Schlesner, Matthias ;
Zhang, Junjun ;
Wang, Wenyi ;
Wheeler, David A. ;
Ding, Li ;
Simpson, Jared T. ;
O'Connor, Brian D. ;
Yakneen, Sergei ;
Ellrott, Kyle ;
Miyoshi, Naoki ;
Butler, Adam P. ;
Royo, Romina ;
Shorser, Solomon, I ;
Vazquez, Miguel ;
Rausch, Tobias ;
Tiao, Grace ;
Waszak, Sebastian M. ;
Rodriguez-Martin, Bernardo ;
Shringarpure, Suyash ;
Wu, Dai-Ying ;
Demidov, German M. ;
Delaneau, Olivier ;
Hayashi, Shuto .
NATURE, 2020, 578 (7793) :82-+
[7]   Comprehensive single-cell transcriptional profiling of a multicellular organism [J].
Cao, Junyue ;
Packer, Jonathan S. ;
Ramani, Vijay ;
Cusanovich, Darren A. ;
Huynh, Chau ;
Daza, Riza ;
Qiu, Xiaojie ;
Lee, Choli ;
Furlan, Scott N. ;
Steemers, Frank J. ;
Adey, Andrew ;
Waterston, Robert H. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2017, 357 (6352) :661-667
[8]   Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature [J].
Chang, Yoosup ;
Park, Hyejin ;
Yang, Hyun-Jin ;
Lee, Seungju ;
Lee, Kwee-Yum ;
Kim, Tae Soon ;
Jung, Jongsun ;
Shin, Jae-Min .
SCIENTIFIC REPORTS, 2018, 8
[9]   Discovering the anticancer potential of non-oncology drugs by systematic viability profiling [J].
Corsello, Steven M. ;
Nagari, Rohith T. ;
Spangler, Ryan D. ;
Rossen, Jordan ;
Kocak, Mustafa ;
Bryan, Jordan G. ;
Humeidi, Ranad ;
Peck, David ;
Wu, Xiaoyun ;
Tang, Andrew A. ;
Wang, Vickie M. ;
Bender, Samantha A. ;
Lemire, Evan ;
Narayan, Rajiv ;
Montgomery, Philip ;
Ben-David, Uri ;
Garvie, Colin W. ;
Chen, Yejia ;
Rees, Matthew G. ;
Lyons, Nicholas J. ;
McFarland, James M. ;
Wong, Bang T. ;
Wang, Li ;
Dumont, Nancy ;
O'Hearn, Patrick J. ;
Stefan, Eric ;
Doench, John G. ;
Harrington, Caitlin N. ;
Greulich, Heidi ;
Meyerson, Matthew ;
Vazquez, Francisca ;
Subramanian, Aravind ;
Roth, Jennifer A. ;
Bittker, Joshua A. ;
Boehm, Jesse S. ;
Mader, Christopher C. ;
Tsherniak, Aviad ;
Golub, Todd R. .
NATURE CANCER, 2020, 1 (02) :235-+
[10]   Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data [J].
Fustero-Torre, Coral ;
Jimenez-Santos, Maria Jose ;
Garcia-Martin, Santiago ;
Carretero-Puche, Carlos ;
Garcia-Jimeno, Luis ;
Ivanchuk, Vadym ;
Di Domenico, Tomas ;
Gomez-Lopez, Gonzalo ;
Al-Shahrour, Fatima .
GENOME MEDICINE, 2021, 13 (01)