Band-Limited Maximizers for a Fourier Extension Inequality on the Circle, II

被引:1
作者
Barker, James [1 ,2 ,4 ]
Thiele, Christoph [3 ]
Zorin-Kranich, Pavel [3 ]
机构
[1] Inst Numer Simulat, Bonn, Germany
[2] Fraunhofer SCAI, Schloss Birlinghoven, St Augustin, Germany
[3] Hausdorff Ctr Math, Bonn, Germany
[4] Fraunhofer SCAI, Schloss Birlinghoven, D-53754 St Augustin, Germany
关键词
Tomas-Stein inequality; harmonic analysis; functional analysis; RESTRICTION;
D O I
10.1080/10586458.2021.1926011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Among the class of functions on the circle with Fourier modes up to degree 120, constant functions are the unique real-valued maximizers for the endpoint Tomas-Stein inequality.
引用
收藏
页码:280 / 293
页数:14
相关论文
共 7 条
  • [1] A sharp trilinear inequality related to Fourier restriction on the circle
    Carneiro, Emanuel
    Foschi, Damiano
    Oliveira e Silva, Diogo
    Thiele, Christoph
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) : 1463 - 1486
  • [2] Some recent progress on sharp Fourier restriction theory
    Foschi, D.
    Oliveira e Silva, D.
    [J]. ANALYSIS MATHEMATICA, 2017, 43 (02) : 241 - 265
  • [3] Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic
    Johansson, Fredrik
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (08) : 1281 - 1292
  • [4] Band-Limited Maximizers for a Fourier Extension Inequality on the Circle
    Oliveira e Silva, Diogo
    Thiele, Christoph
    Zorin-Kranich, Pavel
    [J]. EXPERIMENTAL MATHEMATICS, 2019, : 192 - 198
  • [5] Estimates for certain integrals of products of six Bessel functions
    Oliveira e Silva, Diogo
    Thiele, Christoph
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) : 1423 - 1462
  • [6] RESTRICTION THEOREM FOR FOURIER-TRANSFORM
    TOMAS, PA
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (02) : 477 - 478
  • [7] Wolfram Research Inc., 2019, MATH VERS 12 0