Robust H∞ control for fractional order singular systems 0 < α < 1 with uncertainty

被引:2
|
作者
Li, Bingxin [1 ,2 ]
Zhao, Xin [1 ,2 ,3 ]
机构
[1] Nankai Univ, Inst Robot & Automat Informat Syst, Tianjin 300071, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin 300071, Peoples R China
[3] Nankai Univ, Shenzhen Res Inst, Inst Intelligence Technol & Robot Syst, Shenzhen, Peoples R China
来源
OPTIMAL CONTROL APPLICATIONS & METHODS | 2023年 / 44卷 / 01期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
fractional order singular systems; H-infinity control; linear matrix inequality; robust H-infinity control; SLIDING MODE CONTROL; BOUNDED REAL LEMMAS; STABILIZATION; ADMISSIBILITY; STABILITY;
D O I
10.1002/oca.2939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies robust H-infinity control for fractional order singular systems (FOSS) 0 <alpha < 1 with uncertainty. First, the condition based on the linear matrix inequality (LMI) is obtained for fractional order systems with 0 <alpha< 1 in Corollary 1. Compared with existing results, by using two matrices to replace the complex matrix, the condition is easier to solve. Based on Corollary 1, the condition of H-infinity control based on non-strict LMI for FOSS without uncertainty is proposed. The strict LMI-based conditions of H-infinity control are improved to overcome the equality constraints. Finally, the LMI-based conditions of robust H-infinity control are proposed for FOSS. Four examples are shown to illustrate the effectiveness of the method.
引用
收藏
页码:332 / 348
页数:17
相关论文
共 50 条
  • [21] Novel robust stability conditions of fractional-order systems with structured uncertain parameters based on parameter-dependent functions: the 0 &lt; α &lt; 1 case
    Kang, Chenfei
    Lu, Jun-Guo
    Qiu, Xu-Yi
    Zhang, Qing-Hao
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (02) : 169 - 190
  • [22] A Unified Framework of Stability Theorems for LTI Fractional Order Systems With 0 &lt; α &lt; 2
    Zhang, Xuefeng
    Lin, Chong
    Chen, Yang Quan
    Boutat, Driss
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) : 3237 - 3241
  • [23] Robust H∞ Dynamic Output Feedback Control of Linear Time-Varying Periodic Fractional order Singular Systems
    Jiang, Xuefeng
    Xiao, Ming
    Jiang, Peng
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3066 - 3071
  • [24] Robust H∞ model reduction for the continuous fractional-order two-dimensional Roesser system: The 0&lt; ε ≤1 case
    Zhang, Jia-Rui
    Lu, Jun-Guo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 782 - 798
  • [25] H8 filtering for continuous fractional-order 2D Roesser model: The 0 &lt; a=1
    Zhang, Jia-Rui
    Lu, Jun-Guo
    ASIAN JOURNAL OF CONTROL, 2023, 25 (05) : 4123 - 4133
  • [26] Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 1 &lt; α &lt; 2
    Huang, Sunhua
    Wang, Bin
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (03):
  • [27] Complete Robust Stability Domain of Fractional-Order Linear Time-Invariant Single Parameter-Dependent Systems With the Order 0 &lt; α &lt; 2
    Lu, Jun-Guo
    Qian, Ruo-Nan
    Zhang, Qing-Hao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (09) : 3854 - 3858
  • [28] Positive Real Lemmas for Fractional-Order Two-Dimensional Roesser Model: The 0 &lt; ρ1 ≤ 1,0 &lt;ρ2 ≤ 1 Case
    Zhang, Jia-Rui
    Lu, Jun-Guo
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (04) : 2073 - 2094
  • [29] Robust stabilization of uncertain rectangular singular fractional order T-S fuzzy systems with the fractional order 0 < α < 1
    Zhang, X. F.
    Ai, J.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (05): : 129 - 140
  • [30] Observer-based stabilisation of a class of fractional order non-linear systems for 0 &lt; α &lt; 2 case
    Li, Chuang
    Wang, Jingcheng
    Lu, Junguo
    Ge, Yang
    IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (13): : 1238 - 1246