Morse index bounds for minimal submanifolds

被引:1
作者
Adauto, Diego [1 ]
Batista, Marcio [2 ]
机构
[1] Univ Estado Rio Grande do Norte, DME, BR-59610210 Mossoro, RN, Brazil
[2] Univ Fed Alagoas, CPMAT IM, BR-57072970 Maceio, Alagoas, Brazil
关键词
Submanifolds; Morse index; Betti number; High codimension; HYPERSURFACES; SURFACES; REAL;
D O I
10.1007/s13348-022-00380-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Morse index of closed minimal submanifolds immersed into general Riemannian manifolds. Using the strategy developed by Ambrozio et al. (J Differ Geom 108(3):379-410, 2018) and under a suitable constrain on the submanifold, we obtain that the Morse index of the submanifold is bounded from below by a linear function of its first Betti's number, as conjectured by Schoen and Marques-Neves. We also present many Riemannian manifolds and a sufficient condition to get the cited linear lower bound.
引用
收藏
页码:101 / 127
页数:27
相关论文
共 19 条
  • [1] Index estimates for closed minimal submanifolds of the sphere
    Adauto, Diego
    Batista, Marcio
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 802 - 816
  • [2] Index estimates for surfaces with constant mean curvature in 3-dimensional manifolds
    Aiex, Nicolau S.
    Hong, Han
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 60 (01)
  • [3] COMPARING THE MORSE INDEX AND THE FIRST BETTI NUMBER OF MINIMAL HYPERSURFACES
    Ambrozio, Lucas
    Carlotto, Alessandro
    Sharp, Ben
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (03) : 379 - 410
  • [4] Minimal hypersurfaces with low index in the real projective space
    Batista, Marcio
    Martins, Matheus B.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 218
  • [5] Lower bounds for the index of compact constant mean curvature surfaces in R3 and S3
    Cavalcante, Marcos Petrucio
    de Oliveira, Dalian Ferreira
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (01) : 195 - 206
  • [6] DAVIES E. B., 1995, Spectral theory and differential operators, V42, DOI DOI 10.1017/CBO9780511623721
  • [7] Compact minimal hypersurfaces with index one in the real projective space
    do Carmo, M
    Ritoré, M
    Ros, A
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (02) : 247 - 254
  • [8] ELSOUFI A, 1993, COMPOS MATH, V85, P281
  • [9] Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces
    Gorodski, Claudio
    Mendes, Ricardo A. E.
    Radeschi, Marco
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [10] Index and first Betti number of f-minimal hypersurfaces and self-shrinkers
    Impera, Debora
    Rimoldi, Michele
    Savo, Alessandro
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 817 - 840