The Expected Value for the Wiener Index in the Random Spiro Chains

被引:8
作者
Qi, Jinfeng [1 ]
Fang, Minglei [1 ]
Geng, Xianya [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
基金
美国国家科学基金会;
关键词
Wiener index; random spiro chain; expected value; average value; MERRIFIELD-SIMMONS INDEX; KIRCHHOFF INDEXES; RANDOM POLYPHENYL; CYCLOOCTATETRAENE; DISTANCE;
D O I
10.1080/10406638.2022.2038218
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The Wiener index W(G) of a graph G is the sum of distances between all pairs of vertices in G. In this article, we obtain exact analytical expression of the expected value for the Wiener index of the random spiro chains with n octagons, which are graphs of a class of polycyclic hydrocarbons and unbranched multispiro molecules. We also discuss the average value and extreme values with respect to the set of all the random spiro chains.
引用
收藏
页码:1788 / 1798
页数:11
相关论文
共 50 条
  • [31] The average Wiener index of hexagonal chains
    Dobrynin, AA
    Gutman, I
    COMPUTERS & CHEMISTRY, 1999, 23 (06): : 571 - 576
  • [32] THE WIENER INDEX OF RANDOM DIGITAL TREES
    Fuchs, Michael
    Lee, Chung-Kuei
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 586 - 614
  • [33] Wiener index of certain families of hexagonal chains
    Andrey A. Dobrynin
    Ehsan Estaji
    Journal of Applied Mathematics and Computing, 2019, 59 : 245 - 256
  • [34] Wiener index of certain families of hexagonal chains
    Dobrynin, Andrey A.
    Estaji, Ehsan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) : 245 - 256
  • [35] Enumeration of the Gutman and Schultz indices in the random polygonal chains
    Zhu, Wanlin
    Fang, Minglei
    Geng, Xianya
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 10826 - 10845
  • [36] Expected Value of Fuzzy Random Variables
    Indarsih
    Widodo
    Indrati, Rini
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 273 - 280
  • [37] The Wiener index of simply generated random trees
    Janson, S
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (04) : 337 - 358
  • [38] A simple formula for the calculation of the Wiener index of hexagonal chains
    Dobrynin, AA
    COMPUTERS & CHEMISTRY, 1999, 23 (01): : 43 - 48
  • [39] Chemical Graphs with the Minimum Value of Wiener Index
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 81 (01) : 119 - 132
  • [40] Merrifield-Simmons Index in Random Phenylene Chains and Random Hexagon Chains
    Chen, Ailian
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015