Inverse Gaussian Liu-type estimator

被引:4
作者
Bulut, Y. Murat [1 ]
机构
[1] Eskisehir Osmangazi Univ, Dept Stat, Eskisehir, Turkey
关键词
Inverse Gaussian regression model; Liu-type estimator; Maximum likelihood; Monte Carlo simulation; MSE; Multicollinearity; RIDGE-REGRESSION; PERFORMANCE; PARAMETERS; MODEL;
D O I
10.1080/03610918.2021.1971243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The inverse Gaussian regression (IGR) model parameters are generally estimated using the maximum likelihood (ML) estimation method. Since the multicollinearity problem exists among the explanatory variables, the ML estimation method becomes inflated. When the multicollinearity problem occurs, biased estimators can be used to estimate the parameters of the model. One of the most widely used biased estimators is the Liu-type estimator. In this study, we extend the Liu-type estimator for the IGR model. The proposed estimator is compared with the Ridge and Liu estimators defined for the IGR model in terms of the mean squared error (MSE) criterion. Also, a real data example is presented to illustrate the superiority of the proposed estimator. Experimental results show that the Liu-type estimator outperforms the Ridge and Liu estimators when multicollinearity exists.
引用
收藏
页码:4864 / 4879
页数:16
相关论文
共 37 条
[1]   A new Liu-type estimator for the Inverse Gaussian Regression Model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Qasim, Muhammad .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) :1153-1172
[2]   Two-parameter estimator for the inverse Gaussian regression model [J].
Akram, Muhammad Naumanm ;
Amin, Muhammad ;
Amanullah, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6208-6226
[3]   Liu-type estimator for the gamma regression model [J].
Algamal, Zakariya Yahya ;
Asar, Yasin .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) :2035-2048
[4]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849
[5]  
Amin M, 2022, COMMUN STAT-THEOR M, V51, P2552, DOI [10.1080/03610926.2020.1777308, 10.1163/9789004419513_002]
[6]   Performance of some ridge estimators for the gamma regression model [J].
Amin, Muhammad ;
Qasim, Muhammad ;
Amanullah, Muhammad ;
Afzal, Saima .
STATISTICAL PAPERS, 2020, 61 (03) :997-1026
[7]  
[Anonymous], 1988, Sensitivity analysis in linear regression
[8]  
Asar Y., 2018, TRENDS PERSPECTIVES, P23
[9]   Developing a restricted two-parameter Liu-type estimator: A comparison of restricted estimators in the binary logistic regression model [J].
Asar, Yasin ;
Erisoglu, Murat ;
Arashi, Mohammad .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) :6864-6873
[10]   New Shrinkage Parameters for the Liu-type Logistic Estimators [J].
Asar, Yasin ;
Genc, Asir .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) :1094-1103