Foam-Embedded Soft Robotic Joint With Inverse Kinematic Modeling by Iterative Self-Improving Learning

被引:3
作者
Huang, Anlun [1 ]
Cao, Yongxi [1 ]
Guo, Jiajie [1 ]
Fang, Zhonggui [1 ]
Su, Yinyin [1 ,2 ]
Liu, Sicong [1 ]
Yi, Juan [1 ]
Wang, Hongqiang [3 ]
Dai, Jian S. [3 ]
Wang, Zheng [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Guangdong Prov Key Lab Human Augmentat & Rehabil R, Shenzhen 518000, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518000, Peoples R China
关键词
Soft robotics; Manipulators; Arms; Oscillators; Bellows; Kinematics; Actuators; Soft robotic joint; oscillation reduction; self-improving learning; DYNAMIC CONTROL; FABRICATION; DESIGN;
D O I
10.1109/LRA.2024.3349831
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Soft robotic arms have gained significant attention owing to their flexibility and adaptability. Nonetheless, the instability due to their high-elasticity structure further leads to the difficulty of precise kinematic modeling and control. This letter introduces a novel solution employing foam-embedded joint design (Fe-Joint), effectively mitigating oscillations and enhancing motion stability. This innovation is integrated into the new continuum soft robotic arm (Fe-Arm). Through iterative design optimization, the Fe-Arm attains superior mechanical performance and control capabilities, enabling a settling state in 0.4 seconds post external force. Enabled by the quasi-static behavior of Fe-Arm, we propose a long short-term memory network (LSTM) based iterative self-improving learning strategy (ISL) for end-to-end inverse kinematics modeling, tailored to Fe-Arm's mechanical traits, enhancing modeling performance with limited data. Investigating key control parameters, we achieve target trajectory modeling errors within 9% of the workspace radius. The generalization potential of the ISL method is demonstrated using the pentagonal trajectory and on a different Fe-Arm configuration.
引用
收藏
页码:1756 / 1763
页数:8
相关论文
共 23 条
[1]   Multiobjective Optimization for Stiffness and Position Control in a Soft Robot Arm Module [J].
Ansari, Y. ;
Manti, M. ;
Falotico, E. ;
Cianchetti, M. ;
Laschi, C. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (01) :108-115
[2]   Machine Learning for Soft Robotic Sensing and Control [J].
Chin, Keene ;
Hellebrekers, Tess ;
Majidi, Carmel .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (06)
[3]   Dynamic Control of the Bionic Handling Assistant [J].
Falkenhahn, Valentin ;
Hildebrandt, Alexander ;
Neumann, Ruediger ;
Sawodny, Oliver .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (01) :6-17
[4]   Reconfigurability and unified kinematics modeling of a 3rTPS metamorphic parallel mechanism with perpendicular constraint screws [J].
Gan, Dongming ;
Dai, Jian S. ;
Dias, Jorge ;
Seneviratne, Lakmal .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2013, 29 (04) :121-128
[5]   Kinetic study and thermal decomposition behavior of viscoelastic memory foam [J].
Garrido, Maria A. ;
Font, Rafael ;
Conesa, Juan A. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 119 :327-337
[6]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[7]   Design of a Pneumatic Muscle Based Continuum Robot With Embedded Tendons [J].
Kang, Rongjie ;
Guo, Yong ;
Chen, Lisha ;
Branson, David T., III ;
Dai, Jian S. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (02) :751-761
[8]   Review of machine learning methods in soft robotics [J].
Kim, Daekyum ;
Kim, Sang-Hun ;
Kim, Taekyoung ;
Kang, Brian Byunghyun ;
Lee, Minhyuk ;
Park, Wookeun ;
Ku, Subyeong ;
Kim, DongWook ;
Kwon, Junghan ;
Lee, Hochang ;
Bae, Joonbum ;
Park, Yong-Lae ;
Cho, Kyu-Jin ;
Jo, Sungho .
PLOS ONE, 2021, 16 (02)
[9]   Scaling Up Soft Robotics: A Meter-Scale, Modular, and Reconfigurable Soft Robotic System [J].
Li, Shuguang ;
Awale, Samer A. ;
Bacher, Katharine E. ;
Buchner, Thomas J. ;
Della Santina, Cosimo ;
Wood, Robert J. ;
Rus, Daniela .
SOFT ROBOTICS, 2022, 9 (02) :324-336
[10]  
Li YJ, 2020, IEEE INT CONF ROBOT, P5869, DOI [10.1109/icra40945.2020.9196729, 10.1109/ICRA40945.2020.9196729]