Efficient and stable perovskite solar cells with regulated depletion region

被引:46
|
作者
Shen, Zhichao [1 ]
Han, Qifeng [1 ]
Luo, Xinhui [1 ]
Shen, Yangzi [1 ]
Wang, Yanbo [1 ]
Yuan, Yongbo [2 ]
Zhang, Yiqiang [3 ]
Yang, Yang [4 ]
Han, Liyuan [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Supermicrostructure & Ultrafast Proc, Changsha, Peoples R China
[3] Zhengzhou Univ, Henan Inst Adv Technol, Sch Mat Sci & Engn, Zhengzhou, Peoples R China
[4] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
DEGRADATION; MIGRATION; TRANSPORT; LIGHT;
D O I
10.1038/s41566-024-01383-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Irreversible ion migration from the perovskite layer to the charge transport layer and metal electrodes causes irreversible efficiency loss in perovskite solar cells. Confining the mobile ions within the perovskite layer is a promising strategy to improve the long-term operational stability of solar cells. Here we inhibit the migration of iodide ions out of the perovskite under light illumination by creating a depletion region inside the perovskite layer. Precise control of the doping depth induces an electric field within the perovskite that counteracts ion migration while enhancing carrier separation. Our devices exhibit a certified power conversion efficiency of 24.6% and maintain over 88% of the initial efficiency after 1,920 h of continuous illumination under maximum power point conditions (65 degrees C in ambient air, following the ISOS-L-2 protocol). The power conversion efficiency returns to more than 94% of its initial value after overnight recovery. When operating under repeated 12 h light on/off cycles for over 10,000 h (solar simulator at 65 degrees C and ambient air, following the ISOS-LC-2 protocol), the efficiency loss is less than 2%. We expect this method to open up new and effective avenues towards enhancing the long-term stability of high-performance perovskite photovoltaics. Controlling the doping depth in perovskites allows the creation of a depletion region that inhibits the migration of iodide ions under illumination. Solar cells exhibit a power conversion efficiency of 24.6% and maintain 88% of the initial efficiency after 1,900 h of continuous operation.
引用
收藏
页码:450 / 457
页数:8
相关论文
共 50 条
  • [1] Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains
    Hou, Xian
    Huang, Sumei
    Wei Ou-Yang
    Pan, Likun
    Sun, Zhuo
    Chen, Xiaohong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 35200 - 35208
  • [2] Multifunctional Molecular Modulation for Efficient and Stable Hybrid Perovskite Solar Cells
    Milic, Jovana V.
    Kubicki, Dominik J.
    Emsley, Lyndon
    Gratzel, Michael
    CHIMIA, 2019, 73 (04) : 317 - 323
  • [3] The Rise of Highly Efficient and Stable Perovskite Solar Cells
    Graetzel, Michael
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (03) : 487 - 491
  • [4] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    NANOTECHNOLOGY, 2023, 34 (05)
  • [5] Highly Efficient and Stable Perovskite Solar Cells by Introducing a Multifunctional Surface Modulator
    Zhuang, Rongshan
    Wang, Peng
    Wang, Linqin
    Lai, Qian
    Qiu, Junming
    Chen, Yinjuan
    Zhang, Xiaoliang
    Sun, Licheng
    Hua, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (07)
  • [6] Spontaneous grain polymerization for efficient and stable perovskite solar cells
    Li, Xiaodong
    Zhang, Wenxiao
    Zhang, Wenjun
    Wang, Hai-Qiao
    Fang, Junfeng
    NANO ENERGY, 2019, 58 : 825 - 833
  • [7] Atomic layer deposition for efficient and stable perovskite solar cells
    Seo, Seongrok
    Jeong, Seonghwa
    Park, Hyoungmin
    Shin, Hyunjung
    Park, Nam-Gyu
    CHEMICAL COMMUNICATIONS, 2019, 55 (17) : 2403 - 2416
  • [8] In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells
    Wang, Gaoxiang
    Wang, Lipeng
    Qiu, Jianhang
    Yan, Zheng
    Li, Changji
    Dai, Chunli
    Zhen, Chao
    Tai, Kaiping
    Yu, Wei
    Jiang, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7690 - 7700
  • [9] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Xia, Junmin
    Liang, Chao
    Gu, Hao
    Mei, Shiliang
    Li, Shengwen
    Zhang, Nan
    Chen, Shi
    Cai, Yongqing
    Xing, Guichuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [10] Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells
    Li, Chongwen
    Wang, Xiaoming
    Bi, Enbing
    Jiang, Fangyuan
    Park, So Min
    Li, You
    Chen, Lei
    Wang, Zaiwei
    Zeng, Lewei
    Chen, Hao
    Liu, Yanjiang
    Grice, Corey R.
    Abudulimu, Abasi
    Chung, Jaehoon
    Xian, Yeming
    Zhu, Tao
    Lai, Huagui
    Chen, Bin
    Ellingson, Randy J.
    Fu, Fan
    Ginger, David S.
    Song, Zhaoning
    Sargent, Edward H.
    Yan, Yanfa
    SCIENCE, 2023, 379 (6633) : 690 - 694