Highly scalable and standardized organ-on-chip platform with TEER for biological barrier modeling

被引:4
|
作者
Nguyen, Hoang-Tuan [1 ,2 ,3 ,8 ]
Rissanen, Siiri-Liisa [1 ]
Peltokangas, Mimosa [1 ]
Laakkonen, Tino [1 ]
Kettunen, Jere [1 ]
Barthod, Lara [1 ]
Sivakumar, Ragul [1 ]
Palojarvi, Anniina [1 ]
Junttila, Pauliina [1 ]
Talvitie, Jussi [1 ]
Bassis, Michele [4 ]
Nickels, Sarah L. [4 ]
Kalvala, Sara [5 ]
Ilina, Polina [6 ]
Tammela, Paivi [6 ]
Lehtonen, Sarka [5 ,7 ]
Schwamborn, Jens C. [4 ]
Mosser, Sebastien [1 ]
Singh, Prateek [1 ]
机构
[1] Finnadvance Ltd, Oulu, Finland
[2] Univ Oulu, Fac Biochem & Mol Med, Oulu, Finland
[3] Univ Oulu, Bioctr Oulu, Oulu, Finland
[4] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, Dev & Cellular Biol, Esch Sur Alzette, Luxembourg
[5] Univ Eastern Finland, AI Virtanen Inst Mol Sci, Kuopio, Finland
[6] Univ Helsinki, Fac Pharm, Drug Res Program, Helsinki, Finland
[7] Univ Helsinki, Neurosci Ctr, Helsinki, Finland
[8] Finnadvance Ltd, Aapistie 5, Oulu 90220, Finland
来源
TISSUE BARRIERS | 2024年 / 12卷 / 04期
关键词
Blood-brain barrier; drug discovery; high throughput screening; lung; microfluidics; organ-on-chip; shear stress; skin; TEER; vascular barriers; SHEAR-STRESS; A-CHIP; CELLS; PERMEABILITY; DIFFERENTIATION; SKIN;
D O I
10.1080/21688370.2024.2315702
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] High-throughput platform for rapid TEER measurement of Organ-on-a-Chip endothelial and epithelial tubules
    Strijker, W.
    Nicolas, A.
    Olivier, T.
    Lanz, H. L.
    Trietsch, S. J.
    TOXICOLOGY LETTERS, 2018, 295 : S247 - S247
  • [22] Organ-on-a-Chip: New Platform for Biological Analysis
    An, Fan
    Qu, Yueyang
    Liu, Xianming
    Zhong, Runtao
    Luo, Yong
    ANALYTICAL CHEMISTRY INSIGHTS, 2015, 10 : 39 - 45
  • [23] High-throughput platform for rapid TEER measurement of organ-on-a-chip endothelial and epithelial tubules
    Strijker, W.
    Nicolas, A.
    Naumovska, E.
    Trietsch, S. J.
    Hankemeier, T.
    Vulto, P.
    Joore, J.
    TOXICOLOGY LETTERS, 2019, 314 : S289 - S289
  • [24] Organ-on-chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix
    Tantengco, Ourlad Alzeus G.
    Richardson, Lauren S.
    Medina, Paul Mark B.
    Han, Arum
    Menon, Ramkumar
    FASEB JOURNAL, 2021, 35 (04):
  • [25] Integrated Organ-on-Chip platform with PINP plasmonic biosensor for fibrosis monitoring in Duchenne muscular dystrophy
    Fernandez-Costa, J.
    Ruiz-Gutierrez, M.
    Ninfali, C.
    Torabi, M.
    Fernandez-Simon, E.
    Diaz-Manera, J.
    Ramon-Azcon, J.
    NEUROMUSCULAR DISORDERS, 2024, 43
  • [26] Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery
    Sunildutt, Naina
    Parihar, Pratibha
    Salih, Abdul Rahim Chethikkattuveli
    Lee, Sang Ho
    Choi, Kyung Hyun
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [27] Encapsulated Organoids & Organ-on-a-chip platform for cancer modeling
    Picollet-D'hahan, N.
    Laperrousaz, B.
    Porte, S.
    Obeid, P.
    Tollance, A.
    Kermarrec, F.
    Belda-Marin, C.
    Romero-Millan, A.
    Haguet, V.
    Martin, D. K.
    Gidrol, X.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [28] Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit
    Jacquelyn A. Brown
    Simona G. Codreanu
    Mingjian Shi
    Stacy D. Sherrod
    Dmitry A. Markov
    M. Diana Neely
    Clayton M. Britt
    Orlando S. Hoilett
    Ronald S. Reiserer
    Philip C. Samson
    Lisa J. McCawley
    Donna J. Webb
    Aaron B. Bowman
    John A. McLean
    John P. Wikswo
    Journal of Neuroinflammation, 13
  • [29] Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit
    Brown, Jacquelyn A.
    Codreanu, Simona G.
    Shi, Mingjian
    Sherrod, Stacy D.
    Markov, Dmitry A.
    Neely, M. Diana
    Britt, Clayton M.
    Hoilett, Orlando S.
    Reiserer, Ronald S.
    Samson, Philip C.
    McCawley, Lisa J.
    Webb, Donna J.
    Bowman, Aaron B.
    McLean, John A.
    Wikswo, John P.
    JOURNAL OF NEUROINFLAMMATION, 2016, 13
  • [30] LivHeart: A Multi Organ-on-Chip Platform to Study Off-Target Cardiotoxicity of Drugs Upon Liver Metabolism
    Ferrari, Erika
    Visone, Roberta
    Monti, Elisa
    Torretta, Enrica
    Moretti, Matteo
    Occhetta, Paola
    Rasponi, Marco
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (08)